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ABSTRACT

State-of-the-art speaker recognition relays on models that

need a large amount of training data. This models are suc-

cessful in tasks like NIST SRE because there is sufficient

data available. However, in real applications, we usually do

not have so much data and, in many cases, the speaker la-

bels are unknown. We present a method to adapt a PLDA

model from a domain with a large amount of labeled data to

another with unlabeled data. We describe a generative model

that produces both sets of data where the unknown labels are

modeled like latent variables. We used variational Bayes to

estimate the hidden variables. We performed experiments

adapting a model trained on Switchboard to NIST SRE with-

out labels. The adapted model is evaluated on NIST SRE10.

Compared to the non-adapted model, EER improved by 42%

and 49% by adapting with 200 and with all the NIST speakers

respectively.

Index Terms— speaker recognition, PLDA, i-vector, un-

supervised adaptation, variational Bayes

1. INTRODUCTION

The i-vector approach is the state-of-the-art for speaker ver-

ification. It provides a method to map a speech utterance to

a low dimensional fixed length vector retaining the speaker

identity [1]. Great performance has been achieved by mod-

eling the i-vectors distributions by a generative model known

as PLDA [2–4]. PLDA needs to be trained on databases with

a large number of speakers and sessions. In NIST evalua-

tions [5], enough data is available, however, in many real ap-

plications the amount of development data is limited and, in

many cases, the speaker labels are unknown.

There are previous works that address the problem of

database mismatch with PLDA models. In [6], dataset shift

was prevented by normalizing each i-vector by its magnitude

(length normalization). Thus, development and test i-vector
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distributions are made closer. In [7], several adaptation tech-

niques were applied to mitigate language mismatch being

length normalization the one attaining better results.

In [8, 9], authors computed fully Bayesian likelihood ra-

tios by integrating out the parameters of the PLDA model.

This helps with dataset shift, because the posterior distribu-

tions that result, if the amount of training data is small, are

heavy-tailed.

In [10], we presented a variational Bayes (VB) method to

adapt a full-rank PLDA model from one domain to another

with scarce development data. In this paper, we continue that

work with a new difficulty added: the labels of the adaptation

data are unknown. To test our method we adapted a model

trained on Switchboard to NIST SRE. This task was proposed

in the recent JHU workshop on speaker recognition 1.

2. UNSUPERVISED SPLDA

2.1. Model description

Simplified probabilistic linear discriminant analysis (SPLDA)

is a linear generative model that assumes that an i-vector φj

of speaker i can be written as:

φj = µ+Vyi + ǫj (1)

where µ is a speaker independent term,V is a low rank eigen-

voices matrix, yi is the speaker factor vector, and ǫj is the

within class variability term. We put a standard normal prior

on yi and normal with zero mean and precisionW on ǫj .
Figure 1 depicts the Bayesian network of this model

where the training data has been split into two parts: one

with known labels (out-of-domain data), and another with

hidden labels (in-domain or adaptation data). We denote the

out-of-domain data by the subscript d.
θd are the labels of the out-of-domain data and partition

Nd i-vectors into Md speakers. θ are the labels of the in-

domain data and partition N i-vectors into M speakers. θj
is a latent variable comprising a 1–of–M binary vector with

elements θji with i = 1, . . . ,M . Note that, the distribution of

each speaker is assumed to be Gaussian with mean µ +Vyi

and precision W. The set of all the speakers form a GMM

1http://www.clsp.jhu.edu/workshops/archive/

ws13-summer-workshop/groups/spk-13/
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Fig. 1. BN for unsupervised SPLDA.

where θ correspond to the component occupations. The con-

ditional distribution of θ given the mixture weights πθ is

P (θ|πθ) =

N
∏

j=1

M
∏

i=1

π
θji
θi

. (2)

We put a Dirichlet prior on the weights:

P (πθ|τ0) = Dir(πθ|τ0) = C(τ0)

M
∏

i=1

πτ0−1
θi

(3)

where by symmetry we choose the same τ0 for all the compo-

nents, and C(τ0) is the normalization constant.

2.2. Model priors

We chose the model priors based on Bishop’s paper about VB

PPCA [11]. We introduced a hierarchical prior P (V|α) over
V through a conditional Gaussian distribution of the form:

P (V|α) =

ny
∏

q=1

(αq

2π

)d/2

exp

(

−
1

2
αqv

T
q vq

)

(4)

where vq are the columns of V and ny is the speaker fac-

tors dimension. Each αq controls the inverse variance of the

corresponding vq. If a particular αq has a posterior distribu-

tion concentrated at large values, the corresponding vq will

tend to be small, and that direction of the latent space will be

effectively ’switched off’.

We defined a prior for α:

P (α) =

ny
∏

q=1

G (αq|aα, bα) (5)

where G denotes the Gamma distribution.

We placed a Gaussian prior for the mean µ:

P (µ) = N
(

µ|µ0, β
−1I

)

. (6)

Finally, we put Wishart priors on W that can be non-

informative (Jeffreys prior) like

P (W) = lim
k→0
W (W|W0/k, k) = α |W|−(d+1)/2

(7)

or informative like

P (W) =W (W|Ψ0, ν0) . (8)

2.3. Variational Bayes with deterministic annealing

We approximated the joint posterior of the latent variables by

a factorized distribution of the form:

P (Y,Yd, θ, πθ, µ,V,W, α|Φ,Φd) ≈

q (Y,Yd) q (θ) q (πθ)
d
∏

r=1

q (ṽ′
r) q (W) q (α) (9)

where ṽ′
r is a column vector containing the rth row of Ṽ =

[V µ]. If W were diagonal the factorization
∏d

r=1 q (ṽ
′
r)

would not be necessary because it would arise naturally.

However, for full W, we have to force the factorization to

make the problem tractable.

We computed these factors by using Variational Bayes [12]

with deterministic annealing (DA) [13]. The formula to up-

date a factor qj is

ln q∗j (Zj) = Ei6=j [κ lnP (Φ,Φd,Z)] + const (10)

where Z abbreviates the set of all hidden variables, Zj are the

hidden variables corresponding to the jth factor, and κ is the

annealing factor; expectations are taken with respect to all the

factors i 6= j. Equation (10) optimizes the VB lower bound

L = E [lnP (Φ,Φd,Z)]− E [ln q (Z))] (11)

where expectations are taken with respect to the variational

posterior q (Z). L approximates lnP (Φ,Φd). Annealing

modifies the VB objective in a way that helps to avoid local

maxima. We must set κ < 1 at the start and increase it in

each iteration until κ = 1. The terms of lnP (Φ,Φd,Z) cor-
responding to the out-of-domain data were scaled by another

parameter η < 1 to reduce its weight on the model posterior.

The full VB equations can be found in our report [14].

3. EXPERIMENTAL SETUP

3.1. Task description

We tested our method by adapting a SPLDA trained on

Switchboard (SWB) (out-of-domain) to NIST SRE (in-

domain). This task was proposed during the last JHU work-

shop on speaker recognition. The out-of-domain data con-

sisted of 33068 segments from 3114 speakers with known

labels. The in-domain data consisted of 36706 segments from

3807 speakers of NIST SRE04-08 with unknown labels. To

perform faster experiments, we also created random subsets

of 200 and 500 in-domain speakers. The adapted models

were evaluated on the NIST SRE10 det5 (tel-tel) extended

condition.
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3.2. i-vectors

The JHU HLT-COE provided 600 dimensional i-vectors for

this work. They were extracted using 20 MFCC + ∆ with

short time mean and variance normalization. The UBM and

i-vector extractor were gender independent and used 2048

Gaussians. We applied centering, whitening and length nor-

malization to the i-vectors [6]. The parameters needed for

centering and whitening were trained from all the NIST SRE

data since, for that, speaker labels are not required.

3.3. SPLDA

Our SPLDA models were gender independent with speaker

factors of dimension 150. We tried two types of priors for the

parameters of the SPLDA: non-informative and informative.

For the non-informative case, we chose wide priors for µ and

α by setting µ0 = 0 and β = aα = bα = 10−3; and Jeffreys

prior forW.

For the informative case, we chose our priors based on

the average total variance of the data s20 (average across di-

mensions). We observed that, for a SPLDA trained on SWB

with i-vectors centered and whitened with parameters also

trained on SWB, the average variance of the speaker space

was approximately 15% of s20 and the channel variance was

the remaining 85%. To set our priors, we assumed that, for

NIST SRE, those percentages could be similar . Thus, we

computed s20 from the adaptation data. Then, for α (prior of

the inverse eigenvalues), we placed a wide prior with mode

1/(0.15s20) by setting aα = 2 and bα = 0.15s20. For W,

we used a Wishart prior with expectation 1/(0.85s20)I by set-
ting ν0 = 602 and Ψ0 = 1/(0.85s20ν0)I. Note that, for the

Wishart prior to be proper, we need ν0 > d, this means that

the prior will have an important influence on the posterior un-

less that we have a number of training segments N >> d.

The expectations of the model parameters given the VB

posteriors were used to compute the likelihood ratios of the

evaluation set in the standard way.

We also tried a simplified model without priors on the

SPLDA parameters. In this case, the model parameters are

point estimates computed by maximizing L.

We set the parameter η that controls the weight of the out-

of-domain data to 0.25. This value produced the lowest error

rate when training the model on labeled in-domain data. How

to select this parameter in an unsupervised way remains an

open problem that we do not treat in this work.

3.4. Model selection

To select the optimum number of speakers of the unlabeled

dataset, we tried to initialize the algorithm assuming a large

number of speakers and, iteration by iteration, eliminate the

speakers with smaller number of samples. This method is

similar to the automatic relevance determination (ARD) ex-

plained in [12] to find the number of components in a GMM.
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Fig. 2. Normalized lower bounds against number of speakers

(M) for the case where the actual M=200.

We tried several criteria to prune speakers. However we were

only able to merge a small number of speakers.

Then, we applied a brute force approach where we ran the

algorithm several times, each time hypothesizing a different

number of speakers M . We selected the best model based

on the VB lower bound L(M). To rightfully compare lower

bounds for different number of speakers, we need to set the

parameter of the Dirichlet prior on the speakers weights to

τ0 = 400/M . To select the value 400, we tried several val-

ues and chose the one that produced the largest sum of lower

bounds
∑

M L(M).
In the experiments with annealing, we initialized the an-

nealing parameter to κ = 0.3 and, in each iteration, we up-

dated κ as κ← 1.1κ. We tried several initial values for κ and

chose the one that provided the largest final lower bound.

3.5. Initialization

The SPLDA was initialized from the model trained on SWB.

To initialize the speaker labels, we computed the matrix of

likelihood ratios of all against all in-domain i-vectors with the

initial model. Then, we chose the proper threshold to partition

the data into the desired number of speakers.

We also did a cheating experiment with the training list

of 200 speakers. For M = 200, we initialized with the true

labels; for M < 200, we randomly merged speakers; and

for M > 200, we randomly split them. For example, for

M = 300, we have 100 speakers with perfect labels and 100

speakers split into two speakers. We denote this experiment

by Oracle Init.

3.6. EXPERIMENTS RESULTS

Figure 2 compares lower bounds against the number of hy-

pothesized speakers for different adaptation methods and the

adaptation list of 200 speakers. For better visualization, the

lower bounds are normalized by subtracting the maximum of

each method. The methods denoted by PE compute point es-

timates of the model parameters instead of posterior distribu-
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Table 1. EER(%)/MinDCF for different adaptation options.

Table blocks correspond to adapting with 200, 500 and all the

speakers.

M Actual M Max L

EER(%) MinDCF M EER(%) MinDCF M

SWB no adapt 6.57 0.66 - 6.57 0.66 -

PLDA(I,I) 5.96 0.66 - 5.96 0.66 -

Oracle 3.27 0.52 200 3.27 0.52 200

VB PE Oracle Init 3.23 0.52 200 3.24 0.53 205

VB PE 3.87 0.56 200 5.40 0.62 367

VB PE DA 3.64 0.55 200 5.85 0.65 409

VB Non-IP 3.91 0.56 200 5.09 0.61 345

VB Non-IP DA 3.73 0.56 200 4.98 0.61 335

VB IP 3.71 0.55 200 3.86 0.55 248

VB IP DA 3.61 0.55 200 3.83 0.55 248

Oracle 3.02 0.50 500 3.02 0.50 500

VB PE 3.81 0.56 500 5.04 0.63 868

VB PE DA 3.74 0.55 500 6.21 0.66 1079

VB Non-IP 3.71 0.55 500 5.03 0.63 875

VB Non-IP DA 3.52 0.56 500 5.69 0.65 1073

VB IP 3.70 0.55 500 4.21 0.58 726

VB IP DA 3.57 0.54 500 4.01 0.57 691

Oracle 2.19 0.42 3807 2.19 0.42 3807

VB PE 3.17 0.54 3807 4.12 0.58 6558

VB PE DA 2.99 0.52 3807 3.66 0.57 7438

VB Non-IP 3.26 0.54 3807 4.04 0.58 6489

VB Non-IP DA 2.98 0.52 3807 3.69 0.57 7601

VB IP 3.29 0.53 3807 3.98 0.58 6492

VB IP DA 3.01 0.51 3807 3.37 0.56 6867

tions. The label DA means deterministic annealing, IP means

informative priors and Non-IP means non-informative priors.

The oracle initialization has the maximum at M = 205
and decays rapidly at both sides. Initializing the labels with

the SWBmodel, we obtain maxima in much higherM values.

With the oracle initalization we obtain lower error rate so,

ideally, the oracle initialization should provide better lower

bound but that did not happen (LOracle − LSWB = −2643).
Thus, we cannot use L to choose the best initialization.

Regarding the detection of the number of speakers, there

is not a significant difference between the model with point

estimates or the full model with non-informative priors. The

model with informative priors gets the best estimation of the

number of speakers.

Table 1 compares EER and minimum DCF for multiple

variants of the algorithm and adaptation lists. It also compares

the results between choosing the correct number of speak-

ers or the number of speakers with maximum L. In the first

two lines, we see that full-rank PLDA with identity between

and within covariances (equivalent to cosine distance scoring)

achieved better EER than the model trained on SWB. So, in

this case, a generic model was better than the model trained

on out-of-domain data.

We noted that, if we choose the model corresponding to

the actual number of speakers, there are small differences be-

tween computing point estimates or posterior distributions.

We also noted that the models with DA reach lower error

rates. Another consideration to make is how the amount of

adaptation data affects the results. By using informative priors

and DA, and adapting with 200 speakers, the EER improved

by 45% compared to the SWB model. However, by adapt-

ing with 500 and 3807 speakers, it only improved by 1% and

16% compared to 200 speakers. As we increase the amount

of adaptation data the gap between the results with Oracle and

unknown labels grows. When adapting with 200 speakers the

unsupervised model is 10% worse than the oracle and, with

all the data, it is 37% worse. This seems to indicate that we

will reach a point where increasing the amount of unsuper-

vised data will not help anymore.

Now, we look at the column where we choose the model

with largest VB lower bound. Models with DA, in most cases,

selected a larger number of speakers. This was harmful when

adapting with 200 and 500 speakers, except for models with

informative priors. When adapting with all the speakers, mod-

els with DA, even selecting a larger speaker number, provided

the lowest error rates. For all adaptation lists, the best model

combined informative priors and DA. Again, the improve-

ment that we obtain as we increase the data becomes smaller.

For example, the performance for 500 speakers was worse

than for 200. Besides, the minDCF did not improve by adapt-

ing with all the speakers with regard to 200 speakers.

4. CONCLUSIONS

We presented a method to adapt a SPLDA model from a do-

main where we have a large amount of labeled training data

to another domain where the speaker labels of the training

data are unknown. For that, we designed a generative model

that generates both sets of data (labeled and unlabeled) and

the unknown labels were modeled as latent variables. We

tried three variants of the model distinguished according to

how we define the SPLDA parameters: deterministic parame-

ters obtained by maximum likelihood or, latent variables with

non-informative or informative priors.

We used a variational Bayes procedure to approximate the

posterior distributions of the latent variables involved. Deter-

ministic annealing was used to avoid being trapped in local

maxima of the VB lower bound. To detect the number of

speakers M of the unlabeled dataset, we ran simulations hy-

pothesizing different values of M and chose the model that

obtained the largest VB lower bound. This method detected

more speakers than they actually are, however, the model se-

lected in this way was still able to provide good recognition

rates. The best results were achieved by combining informa-

tive priors and annealing.

We experimented adapting a model from Switchboard

to the unlabeled NIST SRE04-08 dataset. We evaluated the

adapted model on the NIST SRE10 det5 condition. Com-

pared to the model trained on Switchboard, EER improved

by 42% and 49% by adapting with 200 speakers and with all

the available data respectively. The minDCF improved by

around 15% for all the adaptation lists evaluated. It did not

benefit from using a large amount of adaptation data.
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