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ABSTRACT
Compression of encrypted data has attracted considerable research
interests nowadays due to distributed processing and cloud comput-
ing. In this work, we propose a novel lossy compression scheme for
encrypted gray-scale images. The original image is first divided into
non-overlapping blocks. Then, it is encrypted by a modulo-256 addi-
tion and block permutation. In compression phase, the spatial corre-
lation and quantization are exploited to reduce the compression ratio.
At the decoder side, context-adaptive interpolation with an image-
dependent threshold is used to make image reconstruction precise.
Experimental results show that the proposed scheme achieves better
performance compared to the previous work.

Index Terms— Lossy compression, image encryption, image
reconstruction, context-adaptive interpolation.

1. INTRODUCTION

In recent years, compression of encrypted data has attracted consid-
erable research interests due to the security concerns in a service-
oriented environment such as distributed processing and cloud com-
puting [1–3]. In such scenarios, not only transmission but also pro-
cessing is done on the public Internet. That is, contents with redun-
dant data are transmitted over an insecure, bandwidth-constrained
communication channel. The traditional way of securely transmit-
ting is to first compress the data and then encrypt the compressed
data. But in some application scenarios, this should be done inverse-
ly. For example, the content owner and network provider are two
separate parties, so the former wants to keep the information confi-
dential to the latter. In this case, the content owner may first perform
encryption and then send the encrypted data to the network provider
who has no access to the encryption key. At the network node, in
order to match the constraint of the transmission channel, the com-
pression of the encrypted data is required. At the receiver side, to
reconstruct the original content, the received data is decrypted and
decompressed simultaneously using the shared encryption key. Fig.
1 illustrates the compression and decompression of encrypted data.

Lossless compression of encrypted images have been developed
in some recent works [4–7]. In [4], Johnson et al. showed that the
performance of such approach can be as good as the traditional way,
i.e., following the distributed source-coding (DSC) theory [8], the
same compression efficiency as well as the security requirement can
be achieved. More specifically, in this work, the authors utilized the
Slepian-Wolf and Wyner-Ziv theorems [9] for lossless compression
and lossy compression, respectively. Moreover, the authors also de-
scribed a system which implements compression of encrypted sparse
binary images. In [5], Schonberg exploited the Markovian property
between bit planes in the Slepian-Wolf decoder. In [6], by exploiting
the spatial correlation between adjacent pixels and that between bit
planes, as well as the cross-channel correlation, Lazzeretti and Barni
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Fig. 1. Sketch of the compression of encrypted data

extended the work of [4] to the cases of gray-scale and color images.
In [7], Liu et al. proposed resolution progressive compression for
lossless image codec. Compared with Schonberg’s work [5], Liu et
al.’s method achieved a superior performance with much better cod-
ing efficiency and less computational complexity. It should be men-
tioned that all these methods [4–7] are based on DSC and they can
provide good performance both in compression and security. How-
ever, backward communication is often required at the receiver side,
and thus the DSC-based methods are not suitable in scenarios with-
out feedback channel.

Lossy compression of encrypted images has also been studied
so far [10–13]. In [10], Kumar and Makur introduced a compres-
sive sensing technique and modified a basis pursuit algorithm ap-
propriately to enable joint decryption and decompression. In [11],
Zhang proposed a lossy compression and iterative reconstruction for
a pseudorandom permuted image. In this method, the original im-
age is encrypted by permutation and thus its histogram is kept after
encryption. As a result, there is a leakage of statistical information.
In [12, 13], two different methods of scalable coding for encrypted
images were proposed in which the compression ratio can be freely
chosen by the network provider. Particularly, in [13], after encryp-
tion, the image is first divided into sub-images. Then, one sub-image
and some bit planes of another sub-image are transmitted. For im-
age reconstruction, the bit planes are used as side information in
context-adaptive interpolation (CAI). The CAI technique was first
proposed in [7] for lossless compression of encrypted images. The
method [13] is computationally efficient and the feedback channel is
not required. However, there is a lot of loss in bit-plane transmission
and the reconstructed image quality is to some extent low.

In this paper, also based on CAI, we propose a novel lossy com-
pression scheme for encrypted gray-scale images. Instead of bit-
plane transmission utilized in [13], the spatial correlation existing
in natural images and quantization operation are exploited in our
method to perform efficient compression. Experimental results show
that, by our method, at decoder side, the reconstructed image quality
can be enhanced compared with [13]. Specifically, in our encryption
phase, the original image is first divided into non-overlapping 2× 2
sized blocks and each block is encrypted by a modulo-256 addition
on the original pixel values with pseudorandom numbers. Then the
divided blocks are permuted in a pseudorandom way. In compres-
sion phase, the encrypted image is decomposed into four downsam-
pled sub-images, and only one sub-image and the difference between
this sub-image and another one are transmitted. Moreover, before
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transmission, quantization operation and arithmetic coding are ap-
plied to the difference image to reduce the compression ratio. Fi-
nally, at the decoder side, when the received data is decrypted, CAI
with an image-dependent threshold is used for image reconstruction.

The rest of this paper is organized as follows. Some related
works are first introduced briefly in Section 2. The proposed lossy
compression scheme is described in details in Section 3. The exper-
imental results are reported in Section 4. Finally, the conclusion is
made in the last section.

2. RELATED WORKS

Some previously proposed lossy compression schemes for encrypted
images [11–13] are briefly introduced in this section.

In [11], Zhang proposed a method in which the original image is
encrypted by pixel permutation. For compression, excessively rough
and fine information of coefficients generated from orthogonal trans-
formation are discarded to reduce the data amount. At the decoder
side, the spatial correlation in natural image is exploited for image
construction. By iteratively updating the values of transformed coef-
ficients, the image can be recovered. The compression ratio and the
reconstructed image quality achieve good performance. The high-
er the compression ratio and the smoother the original image, the
better the quality of the reconstructed image. However, in Zhang’s
work, the pixel values are not masked since only the pixel positions
are shuffled, so the pixel value distribution can be revealed from an
encrypted image.

In another work [12], Zhang et al. proposed a method in which
image encryption is performed based on modulo-256 addition. At
the encoder side, the encrypted image is first decomposed into a
downsampled sub-image and several data sets. The sub-image and
the Hadamard coefficients of each data set are quantized. After quan-
tization, the sub-image and the Hadamard coefficients are transmit-
ted. At the decoder side, the quantized sub-image is served as a low
resolution version of the original image. The quantized Hadamard
coefficients are used to provide detailed information to get high res-
olution information with an iteratively updating procedure until the
original image is recovered. The computation complexity of this
method is low and it is suitable for real-time application.

We now introduce the scalable lossy compression scheme pro-
posed by Kang et al. [13]. In this method, the original gray-scale
image is first encrypted by a standard stream cipher or a modulo-256
addition, resulting in an encrypted image E. Then E is downsam-
pled by a factor 2 in both horizontal and vertical directions and gen-
erate four sub-images denoted as E00, E01, E10 and E11. The num-
ber 0 and 1 denote the horizontal and vertical offsets of the down-
sampling. Referring to Fig. 2, each icon represents an encrypted
image pixel. Finally, E00 and N bit planes of E11 are transmitted.
The compression ratio is thus 0.25(1 + N/8). For the reconstruc-
tion phase, E00 is first decrypted and then used to predict the original
unencrypted version of E11 using CAI. Referring to Fig. 2, for an
original pixel x of E11, consider its four decrypted neighboring pix-
els {t1, ..., t4} belonging to E00. The preliminary prediction of x
with CAI is calculated by

mean(t1, ..., t4) if max(t1, ..., t4)−min(t1, ..., t4) ≤ T
(t1 + t2)/2 if |t3 − t4| − |t1 − t2| > T
(t3 + t4)/2 if |t1 − t2| − |t3 − t4| > T
median(t1, ..., t4) otherwise

(1)
where the threshold T is taken as a fixed value 20. Then, using the
CAI-based preliminary prediction and the transmitted N bit planes

Fig. 2. Sub-images generation and CAI-based prediction of [7, 13].

of E11, a more concise prediction of x can be derived. When E11 is
recovered, E10 and E01 can be predicted also by CAI, and thus the
original image is finally reconstructed. This method is computation-
ally efficient and it is proved better than [10, 14].

3. PROPOSED SCHEME

We describe our scheme in details in this section. The same as the
other methods, the proposed scheme contains three basic steps: en-
cryption, compression and reconstruction.

3.1. Image Encryption

Consider a gray-scale image I . For encryption, I is first divided into
2× 2 sized blocks. Then, each block is encrypted by a modulo-256
addition on the original pixel values with pseudorandom numbers.
In particular, the top-left and bottom-right pixels in the same block
are encrypted with the same pseudorandom number. That is to say, a
block {I2i,2j , I2i+1,2j , I2i,2j+1, I2i+1,2j+1} is encrypted as follows
to get an interim image F{

F2i+s,2j+t = mod(I2i+s,2j+t +K2i+s,2j+t, 256)
F2i+1,2j+1 = mod(I2i+1,2j+1 +K2i,2j , 256)

(2)

where (s, t) ∈ {(0, 0), (0, 1), (1, 0)} and K denotes the pseudoran-
dom numbers matrix. Then, all blocks in F are randomly permuted
to get the final encrypted image E. A number of image permutation
methods such as [15, 16] can be used here.

Although the encoder or potential attacker knows a little part of
difference histogram of original image (e.g., consider the difference
of F2i,2j and F2i+1,2j+1, see (2)), it is impossible to perform a brute
force search to recover the original image. The size of the secret key
space is 3M/4 and the number of possible permutations is (M/4)!,
where M is the image size. Thus this two-stage encryption can be
used in most scenarios without a perfect secrecy requirement.

3.2. Compression of Encrypted Image

The same as [7, 13], in the compression phase, the encrypted image
E is first downsampled by a factor 2 and four sub-images E00, E01,
E10 and E11 are generated. Then, compute the difference

Di,j = E11
i,j − E00

i,j . (3)

According to our encryption (2), D follows a Laplacin-like distribu-
tion and can be compressed remarkably. Finally, transmit E00 and
the compressed D using arithmetic coding to the decoder. The com-
pression ratio is thus 0.25+L/(8M), where L is the code length of
arithmetic coding compression for D.

7438



Moreover, we point out that, to further reduce the compression
ratio, the difference image D can be quantized before encoding. That
is to say, for a given quantization step Q, for each difference value in
[kQ, (k+1)Q−1], it will be quantized as xk ∈ [kQ, (k+1)Q−1].
In this case, the quantization distortion Dis(xk) can be formulated
as

Dis(xk) =
∑

Di,j∈[kQ,(k+1)Q−1]

(Di,j − xk)
2. (4)

Then, for given Q and k, the quantized element xk is selected to
minimize the distortion (4), i.e., it is defined as

xk = argmin
x∈[kQ,(k+1)Q−1]

Dis(x). (5)

Clearly, there is actually no quantization when Q = 1, and the com-
pression ratio decreases when Q increases.

3.3. Image Reconstruction

With the received data, the decoder first converts it into E00 and D,
and then get E11 by taking E11 = E00 + D. Notice that the dif-
ference image D obtained by decoder is the quantized version, so
E11 determined here may not be exactly the same one used by en-
coder since quantization error occurs. Then, using the shared secret
key, after re-permutation and reversing (2), the pixels with indices
(2i, 2j) and (2i+ 1, 2j + 1) can be recovered. For the other pixels,
i.e., the pixels with indices (2i, 2j + 1) and (2i + 1, 2j), they will
be predicted using CAI. For example, referring to Fig. 2, the pixel
y can be obtained applying CAI to its neighbors {t1, ..., t4}. Here,
we mention that, to enhance the prediction performance, instead of
a fixed threshold T used in the conventional CAI in (1), we can take
an image-dependent threshold. Actually, the threshold can be adap-
tively determined based on the image complexity. Notice that, since
only the sub-image E00 can be exactly obtained by the decoder, we
then measure the image complexity using this sub-image.

Suppose the decrypted version of E00 is G. For each pixel
(i, j) ∈ G, we first define the local complexity of this pixel as

LCi,j =

(
1

8

1∑
s=−1

1∑
t=−1

(Gi,j −Gi+s,i+t)
2

) 1
2

(6)

Then, the image complexity denoted as C is measured as the mean
value of LCi,j counting all pixels of G. For example, the complexity
is 12 for the image Lena, while 29 for Baboon. Finally, we take
empirically the threshold T as 2C in the CAI-based prediction (1).
Through our experiments, the performance of CAI-based prediction
can be enhanced using this adaptively determined threshold.

Before closing this section, to better illustrate our method, we
show in Fig. 3 the images during the compression and decompres-
sion procedures. The left, center and right figures of Fig. 3 show the
original image Lena, the encrypted image and the reconstructed im-
age, respectively. Here, in compression phase, the quantization step
Q is taken as 2, and the compression ratio is 0.38. For image quality,
the PSNR of reconstructed image versus the original one is 37.78
dB. It can be observed that the reconstructed image is very similar to
the original one and the difference is visually imperceptible.

4. EXPERIMENTAL RESULTS

For the first experiment, eight standard 512 × 512 sized gray-scale
images including Airplane, Baboon, Elaine, Boat, House, Lake,
Lena and Peppers are used here. All these images are downloaded

Fig. 3. The left, center and right figures show the original image of
Lena, the encrypted image and the reconstructed image with a PSNR
of 37.78 dB, respectively.
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Fig. 5. Distribution of PSNR difference between our scheme and the
method of Kang et al. [13] on the database of BossBase v1.01.

from USC-SIPI database1. In compression phase, the chosen quan-
tization step Q is ranging from 1 to 8. Fig. 4 shows the comparison
results between our method and Kang et al.’s [13] for the eight
standard images. In each figure, x and y-axes mean the compres-
sion ratio and the PSNR of reconstructed image versus the original
one, respectively. From these figures, one can see that our method
achieves a better performance than Kang et al.’s since, for a given
compression ratio, our method can provide always a larger PSNR.
Moreover, for our method with increasing Q, the compression ratio
decreases significantly while the corresponding PSNR decreases
slowly. As a result, our superiority with respect to Kang et al.’s
method is significant for the case of low compression ratio.

For the second experiment, we conduct the comparison on a
large database of BossBase v1.012 [17] containing 10,000 gray-scale
images. The images in BossBase are never-compressed images com-
ing from several digital cameras. All these images are created from
full-resolution color images in RAW format (CR2 or DNG). The
images are then resized such that the smaller side is 512 pixels long,
then they are cropped to 512 × 512 pixels, and finally converted to
gray-scale. In this experiment, Kang et al.’s compression ratio is
fixed as 0.375, and our compression ratio is taken as a value equal to
or smaller than 0.375 by using a suitable quantization step Q. The
probability distribution of PSNR difference between the proposed
method and Kang et al.’s is shown in Fig. 5, demonstrating the su-
periority of our method on a large database. Specifically, the PSNR
increase is 2.40 dB in average for the 10,000 images.

5. CONCLUSION AND RELATION TO PRIOR ART

In this paper, we proposed a new lossy compression scheme for en-
crypted gray-scale images. The main features of our method are
described as follows. First, in compression phase, the spatial corre-
lation and quantization operation are exploited to make the compres-
sion efficient without much information loss. Second, at the receiver

1http://sipi.usc.edu/database/database.php?volume=misc
2http://www.agents.cz/boss/BOSSFinal/
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Fig. 4. Performance comparison between the proposed method and Kang et al.’s [13] for eight standard test images.

side, CAI with an image-dependent threshold is utilized such that the
image reconstruction more precise. The experimental results showed
that our scheme is better than the previous work proposed by Kang
et al. [13].

So far, more and more attention has been paid to signal process-
ing in the encrypted domain (SPED). However, only a few works
have been proposed for the lossy compression of encrypted images.
As we know, the key issue of SPED is how to integrate the encryp-
tion and the desired processing. In this work, a two-stage encryption
is employed, and, to our best knowledge, it is the first time to use
this type of encryption in SPED. Based on the specific encryption,
the spatial correlation of natural images and quantization operation
can be exploited to make the compression efficient. Moreover, in our
scheme, an improved CAI-based prediction is also proposed and it
is proved effective in enhancing the reconstructed image quality.
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