
HEVC DECODER ACCELERATION ON MULTI-CORE X86 PLATFORM

Bingjie Han, Ronggang Wang, Zhenyu Wang, Shengfu Dong, Wenmin Wang, Wen Gao

School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School

ABSTRACT

In this paper, we propose a hybrid parallel decoding strategy

for HEVC which combines task-level parallelism and data-

level parallelism based on CTUs. The data-level parallelism

makes the execution time distribution of different decoding

stages more balanced, and makes the task-level parallelism

more efficient. Our approach imposes no constraint on bit

streams that they shall be generated by optional parallel

coding tools such as tiles or WPP, so it can be applied for all

kinds of HEVC bit streams. Furthermore, SSE, a typical

SIMD instruction set on X86 platform, is utilized to

accelerate time-consuming modules, which shortens the

execution time gaps between different stages and make them

in favor of parallel processing. We have implemented these

acceleration strategies on HM-10.0 decoder, and a great

speed-up ratio is achieved.

Index Terms— HEVC, video decoder, parallel

processing, SIMD

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is the latest joint

video coding standardization project of the Joint

Collaborative Team on Video Coding (JCT-VC) which is

established by ITU-T Video Coding Experts Group and

ISO/IEC Moving Picture Experts Group. The first edition of

the HEVC standard is finalized in January 2013, and it

achieves about 50% lower bit rate than H.264/AVC for the

same subjective quality [1]. The HEVC test Model (HM)

decoder is an example implementation following the HEVC

decoding standard. Aimed at correctness, completeness and

readability, it doesn’t use any parallelization techniques.

Nowadays it is common that a PC has a dual-core CPU or

quad-core CPU which supports Simultaneous Multithreading

(SMT) meanwhile so that a suitable parallel decoding

strategy is expected to achieve significant performance

improvement on PCs. Besides, since Intel introduced the

Streaming SIMD Extensions (SSE) on the Pentium III, the

SIMD instructions have been supported well on PCs.

Parallel decoding strategies can be classified into two

categories: task-level parallelism and data-level parallelism.

Task-level parallelism is to divide a decoder into several

sub-tasks and to attach each sub-task to a separate thread. To

maximize the degree of parallelism, the execution time of all

the sub-tasks is expected to be as close as possible. A task-

level parallelism strategy which shortens execution time gap

between different sub-tasks by adjusting size of blocks that a

sub-task processes is proposed in [2], but it does not resolve

the problem that the second sub-task is always consuming

more time than other sub-tasks. Data-level parallelism is to

process multiple data units in parallel by attaching each data

unit to a separate thread. The data unit can be group of

picture (GOP), frame, slice, slice segment, tile, coding tree

unit (CTU) and so on. The granularities of GOP and frame

are so large that parallelism based on them will lead to a

long delay. The slice, slice segment and tile may be suitable

parallelism granularities, but boundaries of them break up

the connection of context models in entropy decoding and

may also cut off the prediction dependency, which decreases

the coding efficiency. Besides slice segment and tile,

Wavefront Parallel Processing (WPP) is also adopted in

HEVC, and it achieves a better balance between parallel

granularity and coding performance loss than slice- and tile-

level parallelism. Several approaches have been proposed to

decode HEVC bit streams in parallel. For example, [3]

proposes a parallelization strategy based on entropy slices

which is similar to slice segments, and [4] introduces a

parallelization approach called Overlapped Wavefont based

on WPP. But, these approaches can only be applied for

specific bit streams with corresponding parallel decoding

mechanism support. Furthermore, some other approaches

utilize data-level parallelism based on self-defined blocks. In

[5], a data-level parallelism strategy based on inverted Z-

shaped blocks is used on H.264/AVC decoders. This method

simplifies dependencies between different threads, but it

doesn’t make full use of parallelism between different stages.

In this paper, we propose a new parallel decoding

strategy for HEVC which combines task-level parallelism

and data-level parallelism based on CTUs. Data-level

parallelism makes execution time of different stages close

and task-level parallelism makes full use of parallelism

between different stages. This strategy can be applied for all

kinds of HEVC bit streams without any constraint on coding

tools. What’s more, SSE optimization on time-consuming

modules is utilized, and the execution time of different

stages is more balanced after SSE optimization.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7403

Input
bitstream

Entropy
Decoding

IQ IT +
Deblock

filter
SAO

Current
Frame

Intra
Pred.

Previous
frames

Motion
Comp.

Output
video

Reconstruction

Fig. 1. The decoding process in HEVC

2. ARCHITECTURE OF HEVC DECODER

HEVC is based on the same architecture as prior video

codecs like H.264/AVC but with enhancements in each

coding stage. As shown in Fig. 1, decoding process of

HEVC can be divided into four stages. The first stage is

entropy decoding in which the relevant data to be used in the

later stages are extracted. The second stage is reconstruction

which includes inverse quantization (IQ), inverse transform

(IT), and a prediction process that may be intra prediction or

motion compensation. Then, in the third stage, a deblocking

filter which is similar to that in H.264/AVC is applied to the

reconstructed frame. Finally, a new filter called Sample

Adaptive Offset (SAO) is applied in the fourth stage. The

SAO filter simply adds offset values which are obtained by

indexing a lookup table to certain sample values [6].

Compared with H.264/AVC, HEVC supports larger

transform sizes such as 16x16 and 32x32, which are more

difficult to be implemented. For intra prediction, HEVC

support up to 35 prediction modes and wider range of

prediction unit sizes than H.264/AVC. As to motion

compensation, the use of a separable 8-tap filter for luma

sub-pel positions and larger intermediate storage buffers

make the implementation cost increase [7]. Furthermore, as

an additional module, the SAO filter adds complexity

inevitably.

3. CTU-LEVEL PARALLEL DECODING

As depicted in section 2, the decoding process in HEVC can

be divided into four stages: entropy decoding, reconstruction,

deblocking and SAO. The first three stages consume most of

the decoding time as shown in Fig 5(a). Therefore, it will be

efficient to use a task-level parallelism in which the three

stages are attached to separate threads. As the different

stages for a CTU shall be processed in order, threads that

process different modules cannot be executed in full parallel.

So it is necessary to set a synchronization mechanism

between those threads. When entropy decoding of a CTU is

finished, reconstruction of it can be executed instantly,

which means the reconstruction thread has to delay at least

one CTU relative to entropy decoding thread. For the

deblocking thread, synchronization with the reconstruction

thread is more complex. We have to satisfy dependencies

that horizontal filtering should be prior to vertical filtering,

and horizontal filtering of the current CTU cannot be

executed until samples in the top, the current and the bottom

CTUs have been reconstructed. In our approach, a

synchronization mechanism is used first to guarantee that

horizontal filtering will satisfy the dependencies, and

vertical filtering is executed with one CTU delay relative to

horizontal filtering.

CTU(0,5)CTU(0,0) CTU(0,1) CTU(0,2) CTU(0,3) CTU(0,4) CTU(0,6) CTU(0,7)

CTU(1,0) CTU(1,1) CTU(1,2) CTU(1,3) CTU(1,4) CTU(1,5) CTU(1,6) CTU(1,7)

CTU(2,0) CTU(2,1) CTU(2,2) CTU(2,3) CTU(2,4) CTU(2,5) CTU(2,6) CTU(2,7)

CTU(3,0) CTU(3,1) CTU(3,2) CTU(3,3) CTU(3,4) CTU(3,5) CTU(3,6) CTU(3,7)

CTU Deblocking filtered

ReconstructedHorizontal filtering

Vertical filtering

CTU

CTU

CTU Decoded

ReconstructingCTU

CTU Unprocessed

DecodingCTU

CTU

Fig. 2. An example of execution states when number of

reconstruction threads is set to 3.

Reconstruction is a performance bottleneck in the task-

level parallelism, as it is the most time-consuming stage.

Considering that dependencies between CTUs in

reconstruction are much weaker than dependencies in

entropy decoding, we apply a data-level parallelism on it to

improve execution speed of this stage. The dependencies in

reconstruction are mainly reflected in intra prediction in

which current CTU may need information from left, top-left,

top and top-right CTUs. A common parallelism is that a

CTU in the current row (except for the first row) does not

start to be processed until the top-right CTU in the upper

row is processed [8]. This diagonal wavefront parallelism

satisfies that CTUs in different rows are processed in

parallel under the dependencies between CTUs. However,

the synchronous operation to be executed before each CTU

is processed may be a significant cost and reduce the degree

of parallelism especially for low resolution sequences.

In HEVC, CTUs can be divided into multiple coding units

(CUs) through a recursive quad-tree partitioning and the

decision whether intra or inter prediction is used is based on

CUs. Considering that a inter mode CU need not to wait the

finishing of reconstruction of any CUs in the upper CTU

row, we can set a condition to decide whether the current

CTU needs to wait the CTUs in upper row. We can find that

the current CTU needs information from the top-right CTU

only when the top-right CU in the current CTU is intra mode,

and the current CTU needs information from the upper CTU

when one of the top CUs is intra mode. To simplify the

synchronization mechanism, in our design, the current CTU

cannot be processed until reconstruction of the top-right

CTU is finished, when one of the top CUs in the current

CTU is intra mode; otherwise, the current CTU can be

processed immediately after the left CTU finishes the

reconstruction stage. As intra mode CUs account for a quite

low ratio, most of the CTUs in different rows can be

processed in parallel in B-frames and P-frames. Fig. 2 shows

7404

a possible execution states when the hybrid parallelization

strategy is applied.

A-1,0
A0,0 a0,0 b0,0 c0,0 A1,0

A2,0

d-1,0
d0,0 e0,0 f0,0 g0,0 d1,0

d2,0

h-1,0
h0,0 i0,0 j0,0 k0,0 h1,0

h2,0

n-1,0
n0,0 p0,0 q0,0 r0,0 n1,0

n2,0

A-1,1
A0,1 a0,1 b0,1 c0,1 A1,1

A2,1

Fig. 3. Integer and fractional sample positions for luma

interpolation.

A-3,0 A0,0 A1,0 A2,0A-1,0A-2,0 A3,0 A4,0 A-2,0 A1,0 A2,0 A3,0A0,0A-1,0 A4,0 A5,0

-1 40 40 -11-114 4 -1 -1 40 40 -11-114 4 -1

A-1,0 A2,0 A3,0 A4,0A1,0A0,0 A5,0 A6,0 A0,0 A3,0 A4,0 A5,0A2,0A1,0 A6,0 A7,0

A1,0 A4,0 A5,0 A6,0A3,0A2,0 A7,0 A8,0 A2,0 A5,0 A6,0 A7,0A4,0A3,0 A8,0 A9,0

A3,0 A6,0 A7,0 A8,0A5,0A4,0 A9,0 A10,0 A4,0 A7,0 A8,0 A9,0A6,0A5,0 A10,0A11,0

Fig. 4. Samples to be filtered and filter coefficients in the

registers.

4. SSE OPTIMIZATION OF KEY MODULES

The streaming SIMD extensions (SSE) is a set of processor

instructions for the x86 architecture designed by Intel to

boost performance of multimedia and Internet applications,

and it is introduced in Intel Pentium III series processors [9].

SSE is subsequently expanded by Intel to SSE2, SSE3,

SSSE3, and SSE4. AMD also adds support for SSE

instructions, starting with its Athlon XP and Duron (Morgan

core) processors. SSE supports 128-bit wide vector

operations so that it can greatly increase performance at the

situation when exactly the same operations are to be

performed on multiple data objects. Fortunately, most time-

consuming modules in HEVC decoders own this feature,

such as fractional sample interpolation in motion

compensation, inverse transform, inverse quantization,

deblocking filter, SAO and so on, so the decoder can be

greatly accelerated if SSE is applied appropriately. To

illustrate how to achieve performance improvement by using

SSE, we take luma fractional sample interpolation as an

example.

In motion compensation, if a motion vector has a

fractional value, the reference block needs to be interpolated

accordingly [10]. In HEVC, an 8-tap filter for the half-

sample positions and a 7-tap filter for the quarter-sample

positions are applied separately in fractional sample

interpolation for luma samples. As shown in Fig. 3, Ai,j

represents the luma sample at integer sample location (i, j),

and symbols with lowercase letters represent samples at non-

integer sample locations. The fractional samples are all

calculated from the integer samples by applying the

interpolation filter. Taking the samples b0,j as an example,

the computation expression is as follows:

b0, j = (Σ i = −3..4 Ai, j filter[i]) >> (B − 8)

The array filter stores coefficients of the 8-tap filter. The

constant B ≥ 8 is the bit depth of the reference samples. For

most applications, the bit depth is set to 8. With this setting,

we can load 16 serial samples (A0,-3…A0, 12) in a register

first, and then trim and store them in four 128-bit registers

by using PSRLDQ and PUNPCKLQDQ instructions as

shown in Fig. 4. The filter coefficients are loaded twice to a

128-bit register shown in Fig. 4. Then 8 fractional samples

(b0,0…b7,0) will be calculated in few steps by using

PMADDUBSW and PMADDW instructions. As values of

fractional samples may be larger than 255, the results will be

16-bit numbers and the eight values calculated in parallel

can be stored by just an instruction. But, for some fractional

samples, such as ei,j, they are generated by applying the filter

to other fractional samples resulting that 8 samples to be

filtered at most can be loaded to a 128-bit register and

intermediate results may be beyond range of 16-bit numbers,

so only 4 values can be computed in parallel. Similarly, we

can process multiple samples together in other modules

where the same operation is applied on different samples. As

operations are always used based on blocks, it is critical to

note that samples to be processed are not beyond the current

block. By this method, we apply SSE in fractional sample

interpolation, inverse transform, inverse quantization,

weighted average computing in MC, and partial modules in

deblocking filter and SAO.

5. EXPERIMENTAL RESULTS

To achieve higher execution efficiency, we converted the

HM-10.0 decoder into an edition in C programming

language instead of C++ programming language and the

optimized edition is used as the baseline. The baseline

edition achieves a little performance improvement relative to

the HM-10.0 decoder. All the following experiment results

are obtained on a PC with a quad-core Intel Core i7-3770k

processor clocked at 3.5GHz. The test sequences cover 5

resolutions with 2 kinds of QP setting as shown in Table 2.

We assign one sub-thread for deblocking filter, a

configurable number of sub-threads for reconstruction, and

the main thread for entropy decoding and other operations.

As shown in Table 3, a significant performance boost is

achieved after SSE is applied on time-consuming modules.

Since we don’t apply SSE on entropy decoding and intra

prediction, the improvement in all-intra configuration is

small compared with LB and RA configurations. After SSE

optimization, decoding time distributions of the four stages

change significantly for random-access and low-delay

configurations. Take the random-access configuration as an

example, as shown in Fig. 5, after SSE optimization, the

decoding time distribution of different stages is more

balanced.

7405

Sequence QP
AI

[Mbit/s]

LB

[Mbit/s]

RA

[Mbit/s]

Traffic(2560x1600,30Hz)
29 45.50 7.133 7.441

33 29.07 1.759 2.213

ParkScene(1920x1080,24Hz)
29 21.98 2.262 2.336

33 12.86 1.122 1.236

FourPeople(1280x720,60Hz)
25 22.57 1.204 1.670

29 15.22 0.650 0.999

PartyScene(832x480,50Hz)
25 33.20 4.790 4.454

29 22.21 2.508 2.475

Table 2. Bit rate of test sequences. AI is all-intra. LB is low-

delay using B slices and RA is random-access.

Sequence AI LB RA

Traffic QP=29 1.140 1.825 1.983

Traffic QP=33 1.159 1.933 2.087

ParkScene QP=29 1.141 1.854 2.027

ParkScene QP=33 1.165 2.020 2.165

FourPeople QP=25 1.053 1.455 1.538

FourPeople QP=29 1.092 1.577 1.675

PartyScene QP=25 1.162 1.377 1.599

PartyScene QP=29 1.190 1.387 1.650

Table 3. Speed-up ratios obtained by using SSE

Sequence AI2 AI3 LB2 LB3 RA2 RA3

Traffic QP=29 2.838 2.842 2.961 2.969 2.781 2.825

Traffic QP=33 3.063 3.084 2.873 2.882 2.774 2.799

ParkScene QP=29 2.664 2.613 2.916 2.872 2.723 2.765

ParkScene QP=33 3.076 3.131 2.850 2.823 2.732 2.827

FourPeople QP=25 2.676 2.683 2.237 2.264 2.361 2.361

FourPeople QP=29 2.857 2.815 2.248 2.240 2.362 2.370

PartyScene QP=25 1.813 1.800 2.130 2.171 2.126 2.114

PartyScene QP=29 2.031 2.060 2.300 2.333 2.272 2.273

Table 4. Speed-up ratios obtained by using multiple threads.

AI2 means two reconstruction threads are used in all-intra

configuration.

Table 5. Speed-up ratios obtained by using SSE and

multiple threads compared to the baseline edition (BL) and

the HM10.0 decoder (HM). The number of reconstruction

threads is set to two.

Fig. 5. Decoding time distributions for random-access

configuration in the baseline edition (a) and SSE optimized

edition (b). The part of others includes reading bit stream,

initializing and destroying some structures.

Sequence
QP=29 QP=33

LB RA LB RA

Traffic(2560x1600) 50.092 49.834 61.249 57.937

ParkScene(1920x1080) 78.701 78.303 98.320 97.087

Table 6. The decoding speed (frame rate) achieved by using

SSE and multiple threads for Full HD (1920x1080) and

WQXGA (2560x1600) sequences

Table 4 shows the speed-up ratios for sequences of

different resolutions using our parallel decoding strategy.

Larger speed-up ratios are achieved for sequences of higher

resolutions owing to more CTUs that can be processed in

parallel alleviating synchronization delay cost. A significant

acceleration is not achieved when the number of

reconstruction threads is bigger than two. Table 5 shows the

speed-up ratios using multiple threads and SSE compared to

the baseline edition and the HM10.0 decoder.

6. CONCLUSIONS

In this paper, we propose a hybrid parallelization strategy

for HEVC decoder combining task-level parallelism and

data-level parallelism on CTUs, and SSE optimization on

time-consuming modules is utilized. Experimental results

demonstrate that a great speed-up ratio can be achieved by

using above two optimization methods. As shown in Table 6,

Full HD and even higher definition (WQXGA) bit streams

can be decoded in real-time on a quad-cores PC.

7. ACKNOWLEDGE

This work was partly supported by the grant of National

Science Foundation of China 61370115, and Shenzhen

Basic Research Program of JC201104210117A,

JC201105170732A, and JCYJ2012061450301623.

8. REFERENCES

[1] G.J. Sullivan, Woo-Jin Han, and T. Wiegand, “Overview of

the High Efficiency Video Coding (HEVC) Standard,” IEEE

Sequence
AI LB RA

BL HM BL HM BL HM

Traffic QP=29 3.236 3.711 5.406 5.754 5.516 5.805

Traffic QP=33 3.550 4.136 5.553 5.969 5.789 6.129

ParkScene QP=29 3.038 3.495 5.404 5.535 5.520 5.520

ParkScene QP=33 3.582 4.161 5.758 5.930 5.916 5.998

FourPeople QP=25 3.109 3.571 3.079 3.767 3.776 4.464

FourPeople QP=29 3.401 3.926 3.117 3.935 3.896 4.692

PartyScene QP=25 1.908 2.141 3.100 3.270 3.269 3.400

PartyScene QP=29 2.219 2.465 3.628 3.815 3.805 3.963

7406

Transactions on Circuits and Systems for Video Technology,

vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[2] Won-Jin Kim, Keol Cho and Ki-Seok Chung, “Stage-based

frame-partitioned parallelization of H.264/AVC decoding,”

IEEE Transactions on Consumer Electronics, vol. 56, no. 2,

pp. 1088-1096, May 2010.

[3] M. Alvarez-Mesa, C.C. Chi, B. Juurlink, V. George and T.

Schierl, “Parallel video decoding in the emerging HEVC

standard,” IEEE International Conference on Image

Processing (ICIP), pp. 213-216, Sept. 30 2012-Oct. 3 2012.

[4] C.C. Chi, M. Alvarez-Mesa, B. Juurlink, V. George and T.

Schierl, “Improving the parallelization efficiency of HEVC

decoding,” IEEE International Conference on Speech and

Signal Processing (ICASSP), pp. 1545-1548, March 25-30

2012.

[5] B. Erik, van der Tol, Egbert G.T. Jaspers and Rob H.

Gelderblom, “Mapping of H.264 decoding on a

multiprocessor architecture,” Image and Video

Communications and Processing, Proc. SPIE, vol. 5022, May

7 2003.

[6] Chih-Ming Fu, E. Alshina; A. Alshin, Yu-Wen Huang, Ching-

Yeh Chen, Chia-Yang Tsai, Chih-Wei Hsu, Shaw-Min Lei,

Jeong-Hoon Park and Woo-Jin Han, “Sample Adaptive Offset

in the HEVC Standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol.22, no.12, pp.1755,1764,

Dec. 2012.

[7] F. Bossen, B. Bross, K. Suhring and D. Flynn, “HEVC

Complexity and Implementation Analysis,” IEEE

Transactions on Circuits and Systems for Video Technology,

vol.22, no.12, pp.1685,1696, Dec. 2012.

[8] R.G. Wang, J. Wan, W.M. Wang, Z.Y. Wang, S.Y. Dong and

W. Gao, “High Definition IEEE AVS Decoder on ARM

NEON Platform,” IEEE International Conference on Image

Processing (ICIP), 2013

[9] S.K. Raman, V. Pentkovski and J. Keshava, “Implementing

streaming SIMD extensions on the Pentium III processor,”

IEEE Micro, vol.20, no.4, pp.47,57, Jul/Aug 2000.

[10] Alexander Alshin, Elena Alshina, Jeong Hoon Park and Woo-

Jin Han, “DCT based interpolation filter for motion

compensation in HEVC,” Applications of Digital Image

Processing XXXV, Proc. SPIE, vol.8499, Oct. 15 2012.

7407

