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ABSTRACT 

 

In this paper, we propose a hybrid parallel decoding strategy 

for HEVC which combines task-level parallelism and data-

level parallelism based on CTUs. The data-level parallelism 

makes the execution time distribution of different decoding 

stages more balanced, and makes the task-level parallelism 

more efficient. Our approach imposes no constraint on bit 

streams that they shall be generated by optional parallel 

coding tools such as tiles or WPP, so it can be applied for all 

kinds of HEVC bit streams. Furthermore, SSE, a typical 

SIMD instruction set on X86 platform, is utilized to 

accelerate time-consuming modules, which shortens the 

execution time gaps between different stages and make them 

in favor of parallel processing. We have implemented these 

acceleration strategies on HM-10.0 decoder, and a great 

speed-up ratio is achieved. 

 

Index Terms— HEVC, video decoder, parallel 

processing, SIMD 

 

1. INTRODUCTION 

 

High Efficiency Video Coding (HEVC) is the latest joint 

video coding standardization project of the Joint 

Collaborative Team on Video Coding (JCT-VC) which is 

established by ITU-T Video Coding Experts Group and 

ISO/IEC Moving Picture Experts Group. The first edition of 

the HEVC standard is finalized in January 2013, and it 

achieves about 50% lower bit rate than H.264/AVC for the 

same subjective quality [1]. The HEVC test Model (HM) 

decoder is an example implementation following the HEVC 

decoding standard. Aimed at correctness, completeness and 

readability, it doesn’t use any parallelization techniques. 

Nowadays it is common that a PC has a dual-core CPU or 

quad-core CPU which supports Simultaneous Multithreading 

(SMT) meanwhile so that a suitable parallel decoding 

strategy is expected to achieve significant performance 

improvement on PCs. Besides, since Intel introduced the 

Streaming SIMD Extensions (SSE) on the Pentium III, the 

SIMD instructions have been supported well on PCs.  

Parallel decoding strategies can be classified into two 

categories: task-level parallelism and data-level parallelism. 

Task-level parallelism is to divide a decoder into several 

sub-tasks and to attach each sub-task to a separate thread. To 

maximize the degree of parallelism, the execution time of all 

the sub-tasks is expected to be as close as possible. A task-

level parallelism strategy which shortens execution time gap 

between different sub-tasks by adjusting size of blocks that a 

sub-task processes is proposed in [2], but it does not resolve 

the problem that the second sub-task is always consuming 

more time than other sub-tasks. Data-level parallelism is to 

process multiple data units in parallel by attaching each data 

unit to a separate thread. The data unit can be group of 

picture (GOP), frame, slice, slice segment, tile, coding tree 

unit (CTU) and so on. The granularities of GOP and frame 

are so large that parallelism based on them will lead to a 

long delay. The slice, slice segment and tile may be suitable 

parallelism granularities, but boundaries of them break up 

the connection of context models in entropy decoding and 

may also cut off the prediction dependency, which decreases 

the coding efficiency. Besides slice segment and tile, 

Wavefront Parallel Processing (WPP) is also adopted in 

HEVC, and it achieves a better balance between parallel 

granularity and coding performance loss than slice- and tile-

level parallelism. Several approaches have been proposed to 

decode HEVC bit streams in parallel. For example, [3] 

proposes a parallelization strategy based on entropy slices 

which is similar to slice segments, and [4] introduces a 

parallelization approach called Overlapped Wavefont based 

on WPP. But, these approaches can only be applied for 

specific bit streams with corresponding parallel decoding 

mechanism support. Furthermore, some other approaches 

utilize data-level parallelism based on self-defined blocks. In 

[5], a data-level parallelism strategy based on inverted Z-

shaped blocks is used on H.264/AVC decoders. This method 

simplifies dependencies between different threads, but it 

doesn’t make full use of parallelism between different stages. 

In this paper, we propose a new parallel decoding 

strategy for HEVC which combines task-level parallelism 

and data-level parallelism based on CTUs. Data-level 

parallelism makes execution time of different stages close 

and task-level parallelism makes full use of parallelism 

between different stages. This strategy can be applied for all 

kinds of HEVC bit streams without any constraint on coding 

tools. What’s more, SSE optimization on time-consuming 

modules is utilized, and the execution time of different 

stages is more balanced after SSE optimization.  
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Fig. 1. The decoding process in HEVC 

 

2. ARCHITECTURE OF HEVC DECODER 

 

HEVC is based on the same architecture as prior video 

codecs like H.264/AVC but with enhancements in each 

coding stage. As shown in Fig. 1, decoding process of 

HEVC can be divided into four stages. The first stage is 

entropy decoding in which the relevant data to be used in the 

later stages are extracted. The second stage is reconstruction 

which includes inverse quantization (IQ), inverse transform 

(IT), and a prediction process that may be intra prediction or 

motion compensation. Then, in the third stage, a deblocking 

filter which is similar to that in H.264/AVC is applied to the 

reconstructed frame. Finally, a new filter called Sample 

Adaptive Offset (SAO) is applied in the fourth stage. The 

SAO filter simply adds offset values which are obtained by 

indexing a lookup table to certain sample values [6]. 

Compared with H.264/AVC, HEVC supports larger 

transform sizes such as 16x16 and 32x32, which are more 

difficult to be implemented. For intra prediction, HEVC 

support up to 35 prediction modes and wider range of 

prediction unit sizes than H.264/AVC. As to motion 

compensation, the use of a separable 8-tap filter for luma 

sub-pel positions and larger intermediate storage buffers 

make the implementation cost increase [7]. Furthermore, as 

an additional module, the SAO filter adds complexity 

inevitably.  

 

3. CTU-LEVEL PARALLEL DECODING 

 

As depicted in section 2, the decoding process in HEVC can 

be divided into four stages: entropy decoding, reconstruction, 

deblocking and SAO. The first three stages consume most of 

the decoding time as shown in Fig 5(a). Therefore, it will be 

efficient to use a task-level parallelism in which the three 

stages are attached to separate threads. As the different 

stages for a CTU shall be processed in order, threads that 

process different modules cannot be executed in full parallel. 

So it is necessary to set a synchronization mechanism 

between those threads. When entropy decoding of a CTU is 

finished, reconstruction of it can be executed instantly, 

which means the reconstruction thread has to delay at least 

one CTU relative to entropy decoding thread. For the 

deblocking thread, synchronization with the reconstruction 

thread is more complex. We have to satisfy dependencies 

that horizontal filtering should be prior to vertical filtering, 

and horizontal filtering of the current CTU cannot be 

executed until samples in the top, the current and the bottom 

CTUs have been reconstructed. In our approach, a 

synchronization mechanism is used first to guarantee that 

horizontal filtering will satisfy the dependencies, and 

vertical filtering is executed with one CTU delay relative to 

horizontal filtering. 
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Fig. 2. An example of execution states when number of 

reconstruction threads is set to 3. 

 

Reconstruction is a performance bottleneck in the task-

level parallelism, as it is the most time-consuming stage. 

Considering that dependencies between CTUs in 

reconstruction are much weaker than dependencies in 

entropy decoding, we apply a data-level parallelism on it to 

improve execution speed of this stage. The dependencies in 

reconstruction are mainly reflected in intra prediction in 

which current CTU may need information from left, top-left, 

top and top-right CTUs. A common parallelism is that a 

CTU in the current row (except for the first row) does not 

start to be processed until the top-right CTU in the upper 

row is processed [8]. This diagonal wavefront parallelism 

satisfies that CTUs in different rows are processed in 

parallel under the dependencies between CTUs. However, 

the synchronous operation to be executed before each CTU 

is processed may be a significant cost and reduce the degree 

of parallelism especially for low resolution sequences. 

In HEVC, CTUs can be divided into multiple coding units 

(CUs) through a recursive quad-tree partitioning and the 

decision whether intra or inter prediction is used is based on 

CUs. Considering that a inter mode CU need not to wait the 

finishing of reconstruction of any CUs in the upper CTU 

row, we can set a condition to decide whether the current 

CTU needs to wait the CTUs in upper row. We can find that 

the current CTU needs information from the top-right CTU 

only when the top-right CU in the current CTU is intra mode, 

and the current CTU needs information from the upper CTU 

when one of the top CUs is intra mode. To simplify the 

synchronization mechanism, in our design, the current CTU 

cannot be processed until reconstruction of the top-right 

CTU is finished, when one of the top CUs in the current 

CTU is intra mode; otherwise, the current CTU can be 

processed immediately after the left CTU finishes the 

reconstruction stage. As intra mode CUs account for a quite 

low ratio, most of the CTUs in different rows can be 

processed in parallel in B-frames and P-frames. Fig. 2 shows 
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a possible execution states when the hybrid parallelization 

strategy is applied. 

 

A-1,0    
A0,0 a0,0 b0,0 c0,0 A1,0    

A2,0 

d-1,0    
d0,0 e0,0 f0,0 g0,0 d1,0    

d2,0 

h-1,0    
h0,0 i0,0 j0,0 k0,0 h1,0    

h2,0 

n-1,0    
n0,0 p0,0 q0,0 r0,0 n1,0    

n2,0 

A-1,1    
A0,1 a0,1 b0,1 c0,1 A1,1    

A2,1 

Fig. 3. Integer and fractional sample positions for luma 

interpolation.  
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Fig. 4. Samples to be filtered and filter coefficients in the 

registers. 

 

4. SSE OPTIMIZATION OF KEY MODULES 

 

The streaming SIMD extensions (SSE) is a set of processor 

instructions for the x86 architecture designed by Intel to 

boost performance of multimedia and Internet applications, 

and it is introduced in Intel Pentium III series processors [9]. 

SSE is subsequently expanded by Intel to SSE2, SSE3, 

SSSE3, and SSE4. AMD also adds support for SSE 

instructions, starting with its Athlon XP and Duron (Morgan 

core) processors. SSE supports 128-bit wide vector 

operations so that it can greatly increase performance at the 

situation when exactly the same operations are to be 

performed on multiple data objects. Fortunately, most time-

consuming modules in HEVC decoders own this feature, 

such as fractional sample interpolation in motion 

compensation, inverse transform, inverse quantization, 

deblocking filter, SAO and so on, so the decoder can be 

greatly accelerated if SSE is applied appropriately. To 

illustrate how to achieve performance improvement by using 

SSE, we take luma fractional sample interpolation as an 

example. 

In motion compensation, if a motion vector has a 

fractional value, the reference block needs to be interpolated 

accordingly [10]. In HEVC, an 8-tap filter for the half-

sample positions and a 7-tap filter for the quarter-sample 

positions are applied separately in fractional sample 

interpolation for luma samples. As shown in Fig. 3, Ai,j 

represents the luma sample at integer sample location (i, j), 

and symbols with lowercase letters represent samples at non-

integer sample locations. The fractional samples are all 

calculated from the integer samples by applying the 

interpolation filter. Taking the samples b0,j as an example, 

the computation expression is as follows: 

b0, j = ( Σ i = −3..4 Ai, j filter[ i ] ) >> (B − 8) 

The array filter stores coefficients of the 8-tap filter. The 

constant B ≥ 8 is the bit depth of the reference samples. For 

most applications, the bit depth is set to 8. With this setting, 

we can load 16 serial samples (A0,-3…A0, 12) in a register 

first, and then trim and store them in four 128-bit registers 

by using PSRLDQ and PUNPCKLQDQ instructions as 

shown in Fig. 4. The filter coefficients are loaded twice to a 

128-bit register shown in Fig. 4. Then 8 fractional samples 

(b0,0…b7,0) will be calculated in few steps by using 

PMADDUBSW and PMADDW instructions. As values of 

fractional samples may be larger than 255, the results will be 

16-bit numbers and the eight values calculated in parallel 

can be stored by just an instruction. But, for some fractional 

samples, such as ei,j, they are generated by applying the filter 

to other fractional samples resulting that 8 samples to be 

filtered at most can be loaded to a 128-bit register and 

intermediate results may be beyond range of 16-bit numbers, 

so only 4 values can be computed in parallel. Similarly, we 

can process multiple samples together in other modules 

where the same operation is applied on different samples. As 

operations are always used based on blocks, it is critical to 

note that samples to be processed are not beyond the current 

block. By this method, we apply SSE in fractional sample 

interpolation, inverse transform, inverse quantization, 

weighted average computing in MC, and partial modules in 

deblocking filter and SAO. 

 

5. EXPERIMENTAL RESULTS 

 

To achieve higher execution efficiency, we converted the 

HM-10.0 decoder into an edition in C programming 

language instead of C++ programming language and the 

optimized edition is used as the baseline. The baseline 

edition achieves a little performance improvement relative to 

the HM-10.0 decoder. All the following experiment results 

are obtained on a PC with a quad-core Intel Core i7-3770k 

processor clocked at 3.5GHz. The test sequences cover 5 

resolutions with 2 kinds of QP setting as shown in Table 2. 

We assign one sub-thread for deblocking filter, a 

configurable number of sub-threads for reconstruction, and 

the main thread for entropy decoding and other operations.  

As shown in Table 3, a significant performance boost is 

achieved after SSE is applied on time-consuming modules. 

Since we don’t apply SSE on entropy decoding and intra 

prediction, the improvement in all-intra configuration is 

small compared with LB and RA configurations. After SSE 

optimization, decoding time distributions of the four stages 

change significantly for random-access and low-delay 

configurations. Take the random-access configuration as an 

example, as shown in Fig. 5, after SSE optimization, the 

decoding time distribution of different stages is more 

balanced. 
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Sequence QP 
AI 

[Mbit/s] 

LB 

[Mbit/s] 

RA 

[Mbit/s] 

Traffic(2560x1600,30Hz) 
29 45.50 7.133 7.441 

33 29.07 1.759 2.213 

ParkScene(1920x1080,24Hz) 
29 21.98 2.262 2.336 

33 12.86 1.122 1.236 

FourPeople(1280x720,60Hz) 
25 22.57 1.204 1.670 

29 15.22 0.650 0.999 

PartyScene(832x480,50Hz) 
25 33.20 4.790 4.454 

29 22.21 2.508 2.475 

Table 2. Bit rate of test sequences. AI is all-intra. LB is low-

delay using B slices and RA is random-access.  

 

Sequence AI LB RA 

Traffic QP=29 1.140 1.825 1.983 

Traffic QP=33 1.159 1.933 2.087 

ParkScene QP=29 1.141 1.854 2.027 

ParkScene QP=33 1.165 2.020 2.165 

FourPeople QP=25 1.053 1.455 1.538 

FourPeople QP=29 1.092 1.577 1.675 

PartyScene QP=25 1.162 1.377 1.599 

PartyScene QP=29 1.190 1.387 1.650 

Table 3. Speed-up ratios obtained by using SSE  

 

Sequence AI2 AI3 LB2 LB3 RA2 RA3 

Traffic QP=29 2.838 2.842 2.961 2.969 2.781 2.825 

Traffic QP=33 3.063 3.084 2.873 2.882 2.774 2.799 

ParkScene QP=29 2.664 2.613 2.916 2.872 2.723 2.765 

ParkScene QP=33 3.076 3.131 2.850 2.823 2.732 2.827 

FourPeople QP=25 2.676 2.683 2.237 2.264 2.361 2.361 

FourPeople QP=29 2.857 2.815 2.248 2.240 2.362 2.370 

PartyScene QP=25 1.813 1.800 2.130 2.171 2.126 2.114 

PartyScene QP=29 2.031 2.060 2.300 2.333 2.272 2.273 

Table 4. Speed-up ratios obtained by using multiple threads. 

AI2 means two reconstruction threads are used in all-intra 

configuration. 

 

Table 5. Speed-up ratios obtained by using SSE and 

multiple threads compared to the baseline edition (BL) and 

the HM10.0 decoder (HM). The number of reconstruction 

threads is set to two. 

 
Fig. 5. Decoding time distributions for random-access 

configuration in the baseline edition (a) and SSE optimized 

edition (b). The part of others includes reading bit stream, 

initializing and destroying some structures. 

 

Sequence 
QP=29 QP=33 

LB RA LB RA 

Traffic(2560x1600) 50.092 49.834 61.249 57.937 

ParkScene(1920x1080) 78.701 78.303 98.320 97.087 

Table 6. The decoding speed (frame rate) achieved by using 

SSE and multiple threads for Full HD (1920x1080) and 

WQXGA (2560x1600) sequences 

 

Table 4 shows the speed-up ratios for sequences of 

different resolutions using our parallel decoding strategy. 

Larger speed-up ratios are achieved for sequences of higher 

resolutions owing to more CTUs that can be processed in 

parallel alleviating synchronization delay cost. A significant 

acceleration is not achieved when the number of 

reconstruction threads is bigger than two. Table 5 shows the 

speed-up ratios using multiple threads and SSE compared to 

the baseline edition and the HM10.0 decoder. 

 

6. CONCLUSIONS 

 

In this paper, we propose a hybrid parallelization strategy 

for HEVC decoder combining task-level parallelism and 

data-level parallelism on CTUs, and SSE optimization on 

time-consuming modules is utilized. Experimental results 

demonstrate that a great speed-up ratio can be achieved by 

using above two optimization methods. As shown in Table 6, 

Full HD and even higher definition (WQXGA) bit streams 

can be decoded in real-time on a quad-cores PC.  
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