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ABSTRACT
In the current video coding standards, rate-distortion opti-
mization (RDO) plays an important role in achieving best
tradeoff between the perceived distortion and transmission
rate. It is widely used in all kinds of encoder decisions, in-
cluding block mode decision, motion vector selection and so
on. Generally, the sum of absolute difference (SAD) or the
sum of square difference (SSD) is used as the distortion mea-
surement. However, it is well known that both of them cannot
always reflect the perceptual quality of the encoded video. In
this paper, an objective quality measurement structural simi-
larity (SSIM) index is proposed as the distortion measurement
in the RDO framework for video coding standards. By fully
exploiting the relationship between SSIM and mean square
error (MSE), the SSIM-based RDO framework can be ap-
proximated by the original SSD-based RDO framework with
only a scaling of the Lagrange multiplier. Experimental re-
sults show that the proposed method outperforms the latest
H.264 codec and also the state-of-the-art SSIM-based RDO
video codec.

Index Terms— SSIM, video coding, rate-distortion opti-
mization

1. INTRODUCTION

In the traditional hybrid video codecs, rate-distortion opti-
mization (RDO) is introduced to make decisions which lead
to the best performance. The goal of RDO is to minimize the
perceived distortion with the number of encoded bits subject
to a rate constraint [1, 2]:

min
Ω

D(Ω)

s.t. R(Ω) ≤ Rc,

whereΩ represents the set of encoder decisions for the block,
D(Ω) and R(Ω) are the distortion and rate measurement us-
ing Ω respectively. Rc is the rate constraint. In real applica-
tions, this constraint problem is reformulated into an uncon-
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straint problem using Lagrange optimization method [1, 2],
which can be expressed as:

min
Ω

J(Ω, λ) = D(Ω) + λR(Ω), (1)

where λ is the Lagrange multiplier which controls the trade-
off between rate and perceived distortion. Generally, the sum
of absolute difference (SAD) or the sum of square difference
(SSD) will be used as the distortion measurement ofD(Ω).
However, SAD and SSD are widely criticized for not cor-

relating well with perceived quality. Recently, a lot of work-
s have been done to develop objective quality assessments
which can accurately reflect the perceived distortion. Sev-
eral promising algorithms including the structural similarity
(SSIM) index [3], visual signal-to-noise ration [4] and visual
information fidelity criterion [5] were proposed to deal with
this problem. Among these algorithms, SSIM has been pre-
ferred due to its accuracy, simplicity and efficiency [6]. SSIM
and its derivations have been applied to a broad range of ap-
plications, ranging from image restoration and compression,
to visual communication and pattern recognition [6].
In order to improve the perceptual video coding perfor-

mance, a lot of efforts have be incorporate to introduce SSIM
index into the RDO framework to characterize the video dis-
tortion. Most of them used (1-SSIM) as the distortion mea-
surement. Wang el al. proposed a SSIM-QP model and a
model for rate as a function of residual coefficients statistics
for the SSIM-based RDO of H.264 [7]. The authors in [8, 9]
also used (1-SSIM) as the distortion measurement for H.264,
they proposed an algorithm for computing an appropriate La-
grange multiplier for the SSIM-based RDO framework. Mai
et al. proposed a SSIM-based RDO framework for Intra cod-
ing of H.264 [10] and then extended their work to fast Intra
mode decision [11] and motion estimation [12]. Instead of us-
ing (1-SSIM) as the distortion measurement, 1/SSIM was also
utilized as the distortion measurement in the RDO framework
[13].
In this paper, we choose 1/SSIM as the distortion mea-

surement of the SSIM-based RDO framework. By fully ex-
ploiting the relationship between SSIM and mean square er-
ror (MSE), the paper provides a convenient and efficient way
of modifying the traditional SSD-based RDO framework into
a SSIM-based RDO framework by just scaling the Lagrange
multiplier properly.
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The rest of this paper is organized as follows: Section 2
gives a briefly introduction on SSIM index and the detailed
analysis of the relationship between SSIM and MSE is also
provided. The proposed algorithm is described in Section 3
and experimental results are shown in Section 4. Finally, Sec-
tion 5 concludes the paper.

2. SSIM AND ITS APPROXIMATION USING MSE

In this section, the basic idea of SSIM index is introduced in
Section 2.1. Then, the relationship between SSIM and MSE
is briefly investigated in Section 2.2.

2.1. SSIM Index

Based on the assumption that the Human Visual System
model is highly adapted for extracting structural information,
the SSIM index assesses three terms between the two image
blocks x and y, which are luminance l(x, y), contrast c(x, y)
and structure s(x, y) [3]:

l(x, y) =
2μxμy + c1
μ2
x + μ2

y + c1
,

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
,

s(x, y) =
σxy + c3
σxσy + c3

,

where μx and μy are mean of x and y respectively, σ2
x and σ2

y

are the variance of x and y respectively, σxy is the covariance
between x and y. c1, c2 and c3 are some constants which
provide spatial masking properties and ensure stability with
weak denominator. In general, c1 = κ1L and c2 = κ2L,
where L is the dynamic range of the pixel value, κ1 and κ2

are set to be 0.01 and 0.03 by default. For c3, we simply set
c3 = c2/2. Combing three terms together, the general form
of SSIM is:

SSIM = l(x, y) · c(x, y) · s(x, y)

= (
2μxμy + c1
μ2
x + μ2

y + c1
)(

2σxy + c2
σ2
x + σ2

y + c2
). (2)

The SSIM index of the whole image is obtained by averaging
the local SSIM indices using a sliding window. If we denote
x to be the original image block and y to be the reconstructed
image block, SSIM can be regarded as the distortion quality
measurement.

2.2. The relationship between SSIM and MSE

In [13], the author simply modeled the relationship between
the reconstructed pixel y and the original pixel x by an addi-
tive distortion model, i.e. y = x + e, where e is the recon-
struction error due to the lossy quantization. However, this
additive model cannot fully describe the relationship between

y and x in all the situations. Because the quantization pro-
cess in the video mainly removes the high frequencies of the
block to achieve compression, which makes y more likely to
be a low-pass filtered version of x. In this paper, we use a
five-tap low-pass filter to filter the original pixel x and its four
neighboring pixels (up x1, bottom x2, left x3 and right x4) to
approximate the reconstructed pixel y. The model between y
and x can be represented as:

y = H
T
X+ e, (3)

whereX = [x, x1, x2, x3, x4]
T andH = [h0, h1, h2, h3, h4]

T

are the corresponding low-pass filter coefficients, which sat-
isfies

∑4

i=0
hi = 1, e is the zero mean noise which is inde-

pendent to x and y.
On the other hand, MSE can be computed as

MSE = E((y − x)2)

= E(y2) + E(x2)− 2E(xy). (4)

It can be easily verified from (3) that μy = μx. By consider-
ing equation (4), (2) can be rewritten as:

SSIM =
2σxy + c2

σ2
x + σ2

y + c2

=
2σxy + c2

E(x2)− μ2
x + E(y2)− μ2

y + c2

=
2σxy + c2

E(x2) + E(y2)− 2μxμy + c2

=
2σxy + c2

MSE+ 2E(xy)− 2μxμy + c2

=
2σxy + c2

MSE+ 2σxy + c2
. (5)

In this paper, we define the SSIM-based distortion mea-
surement as follows:

dSSIM =
1

SSIM

= 1 +
MSE

2σxy + c2
. (6)

Equation (6) gives a convenient and accurate relationship be-
tween dSSIM and MSE of the original block x and its re-
constructed block y. However, the reconstructed block y is
not available during the RDO process, we need to estimate
σxy , with only the information of x. Since μy = μx, we can
make x and y to be zero mean without affecting σxy for sim-
plicity. If the correlation coefficient between x and xi is ρi,
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i = 1, . . . , 4, then σxy can be rewritten using (3), which is:

σxy = E(xy)

= (

4∑

i=0

hiρi)E(x2)

= (

4∑

i=0

hiρi)σ
2

x

= βσ2

x,

where ρ0 = 1 and β =
∑

4

i=0
hiρi. So once we figure out the

low-pass filter coefficients hi and the correlation coefficients
ρi, we can estimate the covariance σxy between the original
block x and its reconstructed block y with only the informa-
tion of x. In this paper, hi and ρi are estimated on the frame
by frame basis.

3. THE PROPOSED SSIM-BASED RDO
FRAMEWORK

Based on the relationship between dSSIM and MSE, the new
SSIM-based RDO framework is proposed in this section.

3.1. Objective Function

Recall that the original RDO framework is done by optimiz-
ing the Lagrangian cost in (1) (Here we use SSD as the dis-
tortion measurement):

J = SSD+ λ̂R = N ×MSE+ λ̂R,

for an appropriate λ̂, where N is the number of the pixels in
the block. If we use the dSSIM as the distortion measurement
in the RDO framework, we want to minimize dSSIM under
the rate constraint. As illustrated in the previous sections,
the problem can be reformulated into an unconstrained mini-
mization problem. For each block b, the objective function of
SSIM-based RDO framework is formulated as follows:

J = NdSSIM+ λR

= N(1 +
MSE

2βσ2
x(b) + c2

) + λR

= N +
SSD

2βσ2
x(b) + c2

+ λR

= N +
1

2βσ2
x(b) + c2

(SSD+ (2βσ2

x(b) + c2)λR).

Equivalently, we can also optimize the following equation for
each block b:

J = SSD+ (2βσ2

x(b) + c2)λR, (7)

for an appropriate λ. Equation (7) offers a very convenien-
t way to incorporate SSIM index into the RDO framework.

With just a modification of the Lagrange multiplier, the orig-
inal SSD-based RDO framework becomes the SSIM-based
RDO framework. For different blocks within the same frame,
we only need to scale the Lagrange multiplier according to
the local characteristics of the block.
There exists an intuitive explanation for this process, com-

pared to the smooth region, a texture region can tolerate a
larger SSD with no significant perceptual quality loss. The
term βσ2

x exactly measures the local texture property of the
block.

3.2. λ Selection

Another important issue is how to choose the appropriate La-
grange multiplier λ. In this paper, the selection of λ is quite
similar compared to [13], which wants to keep the overall rate
of encoding one frame to be the same. In H.264, the RD mod-
el for each macroblock (MB) is:

R(D)

N
= α log(

σ2

D/N
), (8)

where σ2 is the variance of the difference in the MB,D is the
SSD of the MB. To solve (1), we take the derivative of D for
each block b:

∂J(b)

∂D(b)
= 1 + λ̂

∂R(b)

∂D(b)
= 0. (9)

Using (8) in (9), we get:

D∗(b) = Nαλ̂,

R∗(b) = Nα log(
σ2(b)

αλ̂
),

where D∗(b) and R∗(b) are the optimal SSD and rate for the
b-th MB respectively, σ2(b) is the variance of the SSD for the
b-th MB. So the total rate of the frame is:

RSSD = Nα

M∑

b=1

log(
σ2(b)

αλ̂
),

whereM is the number of MBs in one frame.
Similar procedure is taken for the SSIM-based RDO

framework (7), we can get:

D∗(b) = (2βσ2

x(b) + c2)Nαλ,

R∗(b) = Nα log(
σ2(b)

α(2βσ2
x(b) + c2)λ

).

So the total rate is:

RSSIM = Nα

M∑

b=1

log(
σ2(b)

α(2βσ2
x(b) + c2)λ

).

Since we wantRSSD = RSSIM, we can derive the relation-
ship between λ̂ and λ as (assuming that the statistics σ2(b)
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Table 1. Performance Comparison (BD-Rate (SSIM)) of the proposed algorithm with JM 18.4 and the method in [13].

Resolution Sequence Name JM 18.4 Method in [13]

4K
Traffic -21.3% -0.2%

PeopleOnStreet -11.6% 0.3%

1080p
ParkScene -12.0% -2.5%
Cactus -2.0% -0.7%

WVGA
PartyScene -14.1% -1.7%
BQMall -10.6% -1.3%

WQVGA
RaceHorses -18.4% -2.3%

BlowingBubbles -13.7% -0.7%
Average -13.0% -1.1%

remains the same whether SSE or SSIM is used as the distor-
tion measurement):

λ = λ̂ exp(−
1

M

M∑

b=1

log(2βσ2

x(b) + c2)).

This means for the b-th MB, the Lagrange multiplier is:

λb =
2βσ2

x(b) + c2

exp( 1

M

∑M

b=1
log(2βσ2

x(b) + c2))
λ̂.

4. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in the latest H.264
reference software JM 18.4. IPPP structure is used and sev-
eral QPs are tested. The proposed algorithm is tested using
various sequences with different resolutions and properties.
BD-Rate [14] is regarded as the performancemeasurement. A
negative value of BD-Rate implies that the proposed approach
brings coding gain while a positive value means coding loss.
The BD-Rate value can be interpreted as the average rate de-
crease/increase with respect to the baseline while maintaining
the same SSIM quality. The original SSD-based RDO frame-
work and the state-of-the-art SSIM-based algorithm proposed
in [13] are tested as the comparative algorithms. The simula-
tion results are shown in Table 1. One example of the RD
curve is also plotted in Fig. 1.
From Table 1, we can conclude that the proposed SSIM-

based RDO framework outperforms the JM 18.4 reference
software by 13.0% BD-Rate reduction on average, with only
a scaling of the Lagrange multiplier. Moreover, the proposed
algorithm outperforms the method in [13] by 1.1% BD-Rate
reduction on average. This is because the proposed algorithm
gives a more accurate model between the reconstructed block
y and the original block x, especially for the low bit-rate re-
gion. As for high bit-rate region, since the high frequencies
are mainly kept, the equation (3) becomes almost the same

0 500 1000 1500 2000 2500
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0.98
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IM

Proposed Method
Method in [13]
JM 18.4

Fig. 1. RD curve comparison of the proposed algorithm with
the algorithm in [13] and JM 18.4.

compared to [13]. It can also be verified from Fig. 1 that for
high bit-rate region, the coding performance of the proposed
algorithm is comparable with the algorithm in [13] but is bet-
ter than [13] in low bit-rate region.

5. CONCLUSION

In this paper, a SSIM-based RDO framework is proposed. By
fully investigating the relationship between SSIM and MSE,
the proposed SSIM-based RDO framework can be modified
by simply scaling the Lagrange multiplier of the original
SSD-based RDO framework. Simulation results show that
the proposed algorithm outperforms the original SSD-based
RDO framework by 13.0% BD-Rate reduction and outper-
forms the state-of-the-art SSIM-based RDO framework by
1.1% BD-Rate reduction.
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