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ABSTRACT
We consider the design of a distributed online learning and access
mechanism for dynamic spectrum access, where channel availability
statistics are unknown to each secondary user (SU). Unlike existing
distributed access policies, we explore the instantaneous channel gain
of SUs’ channels for multi-user multi-channel diversity gain. We
consider an auction-based approach. For the primary channels with
heterogeneous statistics, we apply the unit demand auction [1] to
determine each SU’s selection of a primary channel based on its
instantaneous rate over each channel. We further propose a learning
based unit demand (LBUD) auction, where each SU only bids for the
M -best channels estimated by itself through distributed learning. The
new mechanism not only reduces communication overhead, but also
improves the throughput performance when the primary channels have
dissimilar availability statistics. In addition, we show that the LBUD
auction preserves the strong property of unit demand auction, i.e. it is
dominant strategy incentive compatible. To improve the convergence
speed of the iterative procedure of channel allocation in the auction, we
also propose an adaptive price increment algorithm. Simulations show
the effectiveness of our proposed auction mechanism in throughput
gain by exploring instantaneous channel fade.

1. INTRODUCTION

One of the main challenges in cognitive radio networks is to
design dynamic spectrum access mehanisms for efficient utilization
of the spectrum. A hierarchical cognitive radio network consists of
primary users who are licensed to use the spectrum and the SUs
who opportunistically use the idle channels that are not occupied by
the primary users. The channel availability statistics of the primary
network are typically unknown to the SUs. Through limited spectrum
sensing, the SUs search for idle channels and make decisions based on
their observation histories for channel access. Thus, the challenges in
designing a distributed policy for spectrum access among SUs involve
not only online learning of the primary channel statistics using local
sensing observations, but also the distributed mechanism to resolve
collisions among SUs.

Consider a cognitive radio network with N independent channels
and M SUs, where N ≥ M . Several decentralized learning and
access policies have been recently developed for distributed dynamic
spectrum access [2]–[7] by formulating the problem as decentralized
multi-arm bandit (MAB) problem [8]. These policies use different
mechanisms to resolve collision among SUs for their access to the
M most available primary channels. In addition, these existing access
policies only rely on the estimated mean channel availabilities through
the learning process to determine access division without exploring the
instantaneous channel fade conditions.

Auction design has been recently considered as a potential spectrum
access mechanism in cognitive radio networks. Different from the
MAB formulation, an auction-based access approach was proposed [9]
where a repeated auction, based on the second-price auction [10], is
considered by exploring instantaneous channel fading gain. A repeated
auction game is considered as a game with incomplete information.
There are several studies that have been conducted in area of the
repeated auction game where auction mechanism is used as a tool for

assigning the objects among multiple bidders [11] and [12]. The authors
of [13] further considered the case where heterogeneous items are
auctioned to multiple bidders with limited budgets. For spectrum access
without the presence of primary users, [14] proposed a distributed
auction method among users for channel access. It is a modification of
the Bertsekas auction algorithm [15] for distributed channel assignment.

In this paper, we consider an auction-based approach and explore
the instantaneous channel fade for multi-user multi-channel diversity
gain. For the heterogeneous primary channels, we apply a unit demand
auction (also known as Demange-Gale-Sotomayor (DGS) auction) to
determine each SU selection of a primary channel based on SU’s
instantaneous rate over each channel. We further propose a learning
based unit demand (LBUD) auction, where each SU only bids for the
M -best channels estimated by each SU through distributed learning.
The new mechanism not only reduces communication overhead, but
also improves the throughput performance when the primary channels
have dissimilar availability statistics. In addition, we show that the
LBUD auction preserves the strong property of the DGS auction, i.e.,
it is dominant strategy incentive compatible (DSIC) (its definition is
given in Section 4.2). To improve the convergence speed of the iterative
procedure for channel allocation in the auction, we also propose an
adaptive algorithm to adjust the price increment in each iteration.
Simulations show the effectiveness of our proposed auction mechanism
in throughput gain by exploring instantaneous channel fade.

Note that the problem considered in [9] is different from ours in
the sense that each SU is allowed to win multiple channels depending
on the auction outcome, instead of each SU selecting one channel to
access. In addition, the second-price auction is a suboptimal auction
for bidding heterogenous multiple channels. Our proposed auction
mechanism is also different from Bertsekas auction [15] which does
not consider bidders’ incentives and thus is not DSIC. In addition, it
cannot handle the scenario with the presence of primary users.

To the best of our knowledge, we are first to apply unit demand
auction designed for bidding heterogeneous objects to the distributed
dynamic access problem. In addition, for our proposed LBUD auction,
we combine distributed learning outcome into the auction mechanism to
explore both channel availability statistics and instantaneous fading gain
among SUs, which is not considered in either existing decentralized
MAB policies or auction-based access mechanisms.

2. NETWORK MODEL

We consider a spectrum consisting of N orthogonal channels that
are licensed to a slotted primary network. A secondary network with
M (M ≤ N ) users independently search for the instantaneous idle
channels among these N channels. Denote Xi(n) as the availability
state of the ith primary channel at slot n, with Xi(n) = 1 when channel
i is available, and 0 otherwise. We assume the channel availability
Xi(n) evolves as an i.i.d. Bernoulli random process over time, with
Xi(n) ∼ Bernoulli(θi), where θi = E[Xi(n)], ∀n, for i = 1, ∙ ∙ ∙ , N .
We assume θi’s are all distinct and are unknown to the SUs. Let θ Δ

=
[θ1, ∙ ∙ ∙ , θN ]T .

At the beginning of each slot n, each SU selects a channel to sense,
and accesses the channel if it is available. Perfect channel sensing is
assumed. Each SU can use the sensing outcome and history to learn the
availability statistics over time. Let T j

i (n) denote the number of times
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that the SU j senses channel i up to time slot n. For SU j selecting
channel i to sense, it records the value of Xi(n) as Xj

i (T j
i (n)). The

sensing observation history of channel i up to time slot n for SU j is
denoted by Xj

i (n)
Δ
= [Xj

i (1), ∙ ∙ ∙ , Xj
i (T j

i (n))]T . SU j estimates θi of
channel i at time n using the sample mean of the observations from
Xj

i (n) as

θ̂j
i (T j

i (n)) =
1

T j
i (n)

T
j
i (n)∑

k=1

Xj
i (k). (1)

Let hj
i (n) be the channel gain for SU j communicating to its (sec-

ondary) destination using channel i at time slot n. The corresponding
instantaneous achievable rate of SU j is denoted as Rj

i (n), where
Rj

i (n) = log
(
1 + Pj |h

j
i (n)|2/σ2

)
with Pj and σ2 are the transmit

power at SU j and receiver noise variance, respectively. We assume
perfect knowledge of hj

i (n) at each SU1, and Rj
i (n) is known at

each SU j. The expected throughput obtained under a given access
mechanism is obtained as

1

n

N∑

i=1

M∑

j=1

∑

k∈Ij
i (n)

θiE
[
Rj

i (k)
]

(2)

where Ij
i (n) denotes the set of time slots up to the current slot n that

SU j has been the sole user of the channel i. Our problem is to design a
distributed online learning and access mechanism among SUs, utilizing
the instantaneous secondary link gain, to maximizes SUs’ throughput,
with minimum exchange of information among SUs.

3. DYNAMIC ACCESS VIA MULTI-CHANNEL AUCTION

One major challenge faced in distributed access among SUs to the
primary network is the possibility of collisions among SUs and how to
resolve them when they happen. We consider an auction-based access
mechanism, in which each SU performs online learning of the primary
channels distributively while selection of an access channel is handled
by a coordinator. Such an auction mechanism will result in a collision
free access.

Let S denote the set of SUs and C the set of the primary channels.
Consider SUs as the bidders and the primary channels as the objects
of the auction. We first consider SUs bid for all the channels in C. In
Section 4, we modify our auction mechanism to consider bidding of a
subset of primary channels. At the beginning of time slot n, SU j sends
a confidential bidding vector of all the channels to the coordinator,
denoted as mj(n)

Δ
= [mj

1(n), ∙ ∙ ∙ , mj
N (n)]T . If SU j decides not to

participate in bidding of channel i, then mj
i (n) = 0. We also define

m−j(n) as the bidding vectors of SU j’s opponents, i.e., m−j(n) =
{mk(n)|k ∈ S\j}. Note that since each channel i has distinct mean
availability statistic θi, they are considered as heterogeneous types that
SUs bid for. Based on SUs’ bids, the coordinator (or auctioneer as the
trusted third party) will assign a channel to each SU. We consider a unit
demand auction (also called DGS auction [1]), which is first proposed
in economics for bidding heterogenous objects. It is a generalization
of the second-price auction [16] (bidding for one object) to handle
bidding of multiple heterogenous objects with unit demand. The DGS
auction preserves some nice properties of the second-price auction. It
is a weakly dominant strategy2 which leads to a dominant strategy
equilibrium in which the payoff of each bidder is maximized. Note
that the dominant strategy equilibrium is a Nash equilibrium, but not
vice versa. In addition, the DGS auction reaches the minimum price
equilibrium [1].

Under the DGS allocation strategy, based on the bids from SUs, the
coordinator allocates the channels to SUs. Denote Ai(n) the allocation

1Note that channel i indicates the frequency channel SU j occupies, while
hj

i (n) is the channel gain over the link between the secondary transceiver,
which can be measured by SU j.

2In game theory, a player’s strategy is called a weakly dominant strategy
if it is at least as good as any other strategy for that player irrespective of
what other players’ strategies are.

of channel i among SUs at time slot n and Aj(n) the allocation of
channels for SU j at time slot n, respectively. They are given by
Ai(n)

Δ
= {A1

i (n), ∙ ∙ ∙ , AM
i (n)|Aj

i (n) ∈ {0, 1} ∧
∑M

j=1 Aj
i (n) ≤ 1},

and Aj(n)
Δ
= {Aj

1(n), ∙ ∙ ∙ , Aj
N (n)|Aj

i (n) ∈ {0, 1} ∧
∑N

i=1 Aj
i (n) ≤

1}, where Aj
i (n) is the indicator of channel i allocation to SU j

at time slot n. At most one channel will be assigned to each SU,
and at most one SU can be assigned to each channel. In addition,
if an SU does not bid for a channel, it will not be assigned to that
channel, i.e., Aj

i (n)|(mj
i (n) = 0) = 0. A reservation price Pmin,i is

given to each channel i, indicating the minimum price the coordinator
accepts for a specific channel. Let Pmin

Δ
= [Pmin,1, ∙ ∙ ∙ , Pmin,N ]T .

The auction mechanism determines the channel assignment for each
user through an iterative procedure described below: Let P l

i (n) denote

the price for channel i at time slot n at iteration l. Let Pl(n)
Δ
=

[P l
1(n), ∙ ∙ ∙ , P l

N (n)]T . We summarize the unit demand (UD) auction
mechanism for access decision as follows:

1) The coordinator initializes the price vector P0(n) to the reser-
vation price vector Pmin;

2) SU j ∈ S observes its current valuation of each channel, i.e.,
Rj

i (n), ∀i. Since bidding truthfully is a weakly dominant strategy
in the UD auction, we set mj

i (n) = Rj
i (n); SU j sends mj(n)

to the coordinator;
3) The coordinator obtains the demand set for each SU j, denoted

as Dj(Pl(n)). It is defined as the set of channels that maximizes
SU j’s current payoff

Dj(Pl(n)) = arg max
i

(Rj
i (n)− P l

i (n)). (3)

4) Let D(Pl(n))
Δ
= [D1(Pl(n)), ∙ ∙ ∙ ,DM (Pl(n))]T . The coordi-

nator follows an iterative procedure to check whether there is
any overdemanded sets (defined below) among the demand sets:
i) If there is no overdemanded set of channels: Set Aj

i (n) = 1,
where i ∈ Dj(Pl(n)) is picked randomly if |Dj(Pl(n))| > 1,3

and Aj

i−
(n) = 0, for i− ∈ C\{i}. The allocation process is

completed.
ii) If there are overdemanded sets of channels:

a) The coordinator collects all the overdemanded sets into a
set O. Let So be the set of SUs whose Dj(Pl(n)) is an
overdemanded set, then

O = {Dj(Pl(n)) : j ∈ So}. (4)

b) The coordinator finds the minimal overdemanded set
Dmin(Pl(n)) (defined below) from O. For channel i ∈
Dmin(Pl(n)), update the price vector P l

i (n): P l+1
i (n) =

P l
i (n) + ΔPn,l, where ΔPn,l is the price increment at

iteration l and time slot n. Return to Step 3.
The overdemanded set and minimal overdemanded set are defined as
follows [1]:
Overdemanded set: Define the demanders of Dj(Pl(n)) as
B(Dj(Pl(n))) = {k : Dj(Pl(n)) ∩ Dk(Pl(n)) 6= ∅, ∀k ∈ S}. Define
the exclusive demanders of Dj(Pl(n)) as

BE(Dj(Pl(n))) = {k : Dk(Pl(n)) ⊆ Dj(Pl(n)), ∀k ∈ S} (5)

Then, Dj(Pl(n)) is overdemanded (or weakly overdemanded) at price
Pl(n) if

Dj(Pl(n)) ⊂ C and |BE(Dj(Pl(n))| > (or ≥)|Dj(Pl(n))|. (6)

Minimal Overdemanded set: For each set D in O, for any strict subset
of D, i.e., D′ ⊂ D, D′ is not an overdemanded set, then D is a minimal
overdemanded set.

It is shown that the above auction mechanism leads to a minimal
price equilibrium [1]. That is, let P∗(n) be the price obtained at the
end of the auction, and q(n) be any other competitive price vector at

3| ∙ | denotes the cardinality of a set.
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time slot n. Then, P∗(n) would satisfy P∗(n) ≤ q(n). In addition,
since the auction is shown to be weakly dominant strategy, each SU
obtains its maximal payoff regardless of other bidders’ strategies. In
the above auction mechanism, each SU uses its instantaneous rate
over a channel to bid, thus the channel assignment from the auction
depends on the instantaneous channel condition for each SU over the
primary channels. Thus, the channel assignment is opportunistic, and
the obtained throughput at the secondary network gains from such
opportunistic allocation, in addition to be collision free.

4. MULTI-CHANNEL AUCTION VIA DISTRIBUTED
LEARNING

In the UD auction described above, each SU bids for all N channels.
There are two drawbacks for this approach: First, there are a total
MN bids submitted to the coordinator which incurs large overhead.
Second, the payoff used in determining the channel allocation only
reflects each SU’s instantaneous rate over the channels, but does
not take into account the different mean channel availability among
these heterogeneous channels. Thus, it could result in more throughput
loss. To overcome these drawbacks, we propose an adaptive auction
mechanism, named learning-based unit demand (LBUD) auction. In
this auction, SU j will adaptively choose the best M channels to bid.

To determine the best M channels, recall that each SU learns the
unknown mean availability θi of channel i from its sensing history
based on (1). The online learning algorithm UCB1 [17] is a sample-
mean based index policy for a single user learning and access of N
channels, which is shown to be order-optimal in terms of the learning
efficiency. Existing decentralized policies [2]–[4] extend the UCB1
algorithm to the decentralized scenario for distributed learning at each
SU. In the UCB1 algorithm, each SU j ranks channel i based on an
index, defined as

Ij
i (n)

Δ
= θ̂j

i (T j
i (n)) +

√
2 log n/T j

i (n). (7)

Each SU j computes its index vector Ij(n)
Δ
= [Ij

1(n), ∙ ∙ ∙ , Ij
N (n)]T

based on its own sensing observation history.
We first define the M -best channels as those channels whose θi’s

are among the M highest ones. We also define the estimated M -best
channels as those channels whose indexes in (7) are among the top M -
ranked. For SU j, let Cj

M (n) denote the set of indexes of the estimated
M -best channels for SU j at time slot n

Cj
M (n) =

{
i : Ij

i (n) ∈
{

Ij
(1)

(n), ∙ ∙ ∙ , Ij
(M)

(n)
}}

(8)

where {Ij
(i)

(∙)} is the ordered statistics of {Ij
i (∙)} with Ij

(1)
(∙) >

∙ ∙ ∙ > Ij
(N)

(∙). At each time slot n, SU j updates its estimated

M -bast channel set Cj
M (n), and form the bidding vector for those

channels mj
M (n) = [mj

k1
(n), ∙ ∙ ∙ , mj

kM
(n)]T , where ki ∈ C

j
M (n).

The coordinator performs an auction-based allocation using these
bidding vectors from SUs. The demand set Dj

M (Pl(n)) for SU j in
this case is given by

Dj
M (Pl(n)) = arg max

i∈Cj
M

(n)

(mj
i (n)− P l

i (n)), (9)

which is used in the iterative procedure of the LBUD auction to
determine channel allocation to M SUs. The LBUD auction mechanism
is described in Algorithm 1. In Section 4.2, we show that using the
true valuation, i.e., mj

i (n) = Rj
i (n), will lead to the maximum payoffs

among SUs. Therefore, in the following, we assume mj
i (n) = Rj

i (n).
Note that, in the LBUD auction, each SU only submits M bids

along with the channel index set Cj
M . The total overhead is M2 as

compared with MN in the UD auction in Section 3. For N � M ,
the reduction in communication overhead is significant. Performance-
wise, each SU only bids among its estimated M -best channels, and at
the same time, the channel allocation is based on instantaneous fading
gain. Thus, the auction mechanism not only ensures good selection of
channels in mean sense, but also can enjoy the gain from opportunistic
channel selection. Note that existing distributed learning and access

Algorithm 1 : Learning-Based Unit Demand (LBUD) Auction

1) Init: Set the price vector P0(n)← Pmin

2) SU j updates θ̂j
i (n) using (1), ∀i, and obtain Cj

M (n) using (8).
3) SU j observes its current valuation (rate) Rj

i (n), ∀i and sends a
confidential bidding vector mj

M (n).
4) The coordinator obtains the demand set Dj

M (Pl(n)) for SU j using
(9)

5) The coordinator checks whether there is any overdemanded sets
among the demand sets {Dj

M (Pl(n))}

a) The coordinator obtains the exclusive demanders
BE(Dj

M (P(n))) of Dj
M (P(n)) as in (5).

b) The coordinator checks whether Dj
M (Pl(n)), ∀j, is a overde-

manded set or not as in (6)
If there is no overdemanded set, for each j, pick channel i
randomly from Dj(P(n)) as the winning channel for j. The
allocation process is completed.
If there is overdemanded sets,
• The coordinator forms Set O as in (4).
• It finds the minimal overdemanded set Dmin

M (Pl(n))
from O, and updates the price vector Pl(n), for i ∈
Dmin

M (Pl(n)), as P l+1
i (n) = P l

i (n) + ΔPn,l.
• Set iteration l← l + 1 ;return to Step 4.

policies [2]–[4] only ensure good channel selection in the mean sense
without considering instantaneous channel gain of SUs’ communication
links. For the LBUD auction, the winning channel will be selected
only among those highly available channels. When the mean primary
channel availability values in θ are relatively spread, the LBUD auction
outperforms the UD auction in Section 3. This is because bidding only
among the M -best channels prevents SUs to access the channels which
are less likely to be available even though the SU’s instantaneous rates
over these channels are high. However, when values in θ are similar,
the UD auction may outperform the LBUD auction, due to the ”multi-
channel diversity” gain from the opportunistic selection of M among N
channels. To cover a broad range of the distribution of primary channel
statistics, in practice, we should consider both two mechanism to adapt
to different types of mean channel availability distribution.

4.1. Adaptive Price Increment ΔPn,l

The iterative procedure in both UD and LBUD auctions requires the
price update with the price increment ΔPn,l. The setting of ΔPn,l

is important as it directly affects the convergence behavior of the
auction. Note that, the DGS auction [1] is originally proposed for
integer valuations and prices. Due to this, the price increment in the
iteration procedure is fixed to ΔPn,l = 1, and the convergence is shown
with this unit increment. In our case, the valuations (instantaneous rates)
are real numbers. To accommodate this, we can set ΔPn,l to be the
minimum difference of instantaneous rates of all SUs’ channels, i.e.,

ΔPn,l = min
j∈S

min
i 6=m

∣
∣
∣Rj

i (n)−Rj
m(n)

∣
∣
∣ . (10)

Note that, in this case, ΔPn,l is fixed for each auction procedure, but
varies from slot to slot.

Using the price increment suggested above may lead to slow con-
vergence. To improve the convergence speed, we propose an algorithm
which sets ΔPn,l adaptively in each iteration. Specifically, at each
iteration l:

1) For SU j ∈ S: Let ρj
i (n, l) = Rj

i (n) − P l
i (n) be the payoff of

SU j for channel i at iteration l. Find the two channels i and
i′ with two highest (distinct) payoffs, and compute their payoff
difference ωj(n, l) = |ρj

i (n, l)− ρj
i′

(n, l)|.
2) Set the price increment ΔPn,l to be the minimum ωj(n, l) among

all the SUs:
ΔPn,l = min

j∈S
{ωj(n, l)}. (11)
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It can be seen that, the price increment is adaptively set based on the
current payoffs among the SUs. Simulations show that the proposed
adaptive algorithm for price increment substantially improves the
convergency speed of the DGS and the LBUD algorithm.

4.2. Property of the LBUD Auction

An auction mechanism is said to be incentive compatible (IC) if all
bidders will receive the maximum payoffs when their bids reflect their
valuation truthfully. Furthermore, a strategy is called DSIC, if each
bidder achieves its maximum payoff by bidding truthfully irrespective
of the other bidders bid truthfully or not. Bidding truthfully simplifies
decision making of the SUs in an auction. It is shown that bidding
truthfully is a dominant strategy in the DGS auction [1], therefore the
UD auction described in Section 3 is a DSIC mechanism. Here, we
show that the proposed LBUD auction is also DSIC.

Proposition 1: The proposed LBUD auction is DSIC.

5. SIMULATION RESULTS

We first show the improvement of convergence speed using the
adaptive price increment algorithm for ΔPn,l proposed in Section 4.1.
We set θ = [0.3, 0.34, 0.5, 0.6, 0.67, 0.91, 0.2, 0.8, 0.7], M = 4 and
N = 9. In Fig. 1, using the LBUD auction, we plot the CDFs
of the number of iterations under the baseline increment method
in (10) and under our proposed price increment algorithm. As we
see, adaptively updating ΔPn,l improves significantly the convergence
speed as compared with the baseline increment method.

Next, we compare the performance under the UD auction and LBUD
auction. We assume SUs’ channel gain hj

i (n)’s are zero-mean Gaussian
with variance σ2

h and i.i.d. across channels, among SUs and over time
slot n. We set the average received SNR PjE|hj

i (n)|2/σ2 = 8dB, ∀j.
We first show the benefit of exploiting the instantaneous chan-

nel gains of SUs in the channel auction. Fig. 2 shows the av-
erage throughput per SU under the proposed LBUD auction for
N = 15 and M = 2, 4, 6, 8. We set the mean channel availabili-
ties among channels to be similar, i.e., θ =[0.71, 0.715, 0.72, 0.725,
0.73, 0.735, 0.74, 0.745, 0.75, 0.755, 0.76, 0.765, 0.77, 0.78, 0.79]. We
see that the average throughput increases as M increases. This is
because each SU will be assigned one of M channels, and with more
SUs, the channel selection can take advantage from the instantaneous
channel gain, and thus increases the multi-user diversity gain.

In Fig. 3, we compare the average throughput under the UD auction
and the LBUD auction, for different mean channel availability θ as
follows; Case 1: θ = [0.3, 0.34, 0.5, 0.6, 0.67, 0.91, 0.2, 0.8, 0.7], Case
2: θ = [0.1, 0.2, ∙ ∙ ∙ , 0.9], and Case 3: θ = [0.71, 0.72, ∙ ∙ ∙ , 0.79].
We set N = 9 and M = 4. As we see, there is a trade-off
between the gain of selecting channels among higher mean availabilities
and the gain of multi-channel diversity, for different θ distributions.
When θ is relatively spread, the gain of selecting channels with
higher mean channel availability outweighs the loss of multi-channel
diversity due to only bidding among M -best channels, and the LBUD
auction outperforms the UD auction. When values in θ are similar, the
gain of choosing among M channels with highest mean availabilities
diminishes, and the UD auction outperforms the LBUD auction due to
the gain of multi-channel diversity.

Finally, we compare the performance of the UD and LBUD auction
mechanisms with existing distributed access policies, the ρRAND [3] and
the DLF [4] policies. Case 1 is used for θ distribution. The latter
two policies are distributed with no central coordinator, thus there are
collisions but with less overhead. In addition, the channel selections
of these two policies only rely on mean channel statistics but do not
utilize the instantaneous channel gain of SUs. Fig. 4 compares the
average throughput among these schemes. As it can be seen, both two
auction mechanisms substantially outperform the ρRAND and the DLF
policies.

6. CONCLUSION

In this work, we investigated the design of distributed online learning
and access mechanism for dynamic spectrum access. We considered an
auction-based approach to avoid collision among SUs, and explored the
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instantaneous channel fade of SUs for multi-user multi-channel diver-
sity gain. For the heterogeneous primary channels, we applied the UD
auction to determine each SU’s channel access selection. Such auction
has been shown to be a weakly dominant strategy that maximizes each
SU’s payoff. We further proposed the LBUD auction, where each SU
distributively learns the primary channel mean availability, and only
bids for its estimated M -best channels. The LBUD auction not only
reduces communication overhead of required bidding data over the
UD auction, but also incorporates both the mean channel availability
statistics of the primary channels and instantaneous channel fade of
SUs to improve the throughput performance. Simulations show the
effectiveness of our proposed auction mechanisms.
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