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ABSTRACT

In this paper, a cognitive radio (CR) scenario comprised of a sec-

ondary interference channel (IC) and a primary point-to-point link

(PPL) is studied, when the former interferes the latter. In order to sat-

isfy a given rate requirement at the PPL, typical approaches impose

an interference temperature constraint (IT). When the PPL transmits

multiple streams, however, the spatial structure of the interference

comes into play. In such cases, we show that spatial interference

shaping constraints can provide higher sum-rate performance to the

IC while ensuring the required rate at the PPL. Then, we extend the

interference leakage minimization algorithm (MinIL) to incorporate

such constraints. An additional power control step is included in

the optimization procedure to improve the sum-rate when the inter-

ference alignment (IA) problem becomes infeasible due to the addi-

tional constraint. Numerical examples are provided to illustrate the

effectiveness of the spatial shaping constraint in comparison to IT

when the PPL transmits multiple data streams.

Index Terms— Cognitive radio, interference alignment, inter-

ference channel, interference temperature

1. INTRODUCTION

Typically, when two or more networks coexist over the same radio

resources, orthogonal resource allocation approaches are applied to

eliminate inter-network interference, which is clearly suboptimal. In

this context, cognitive radio (CR) has been proposed as a promising

approach to efficiently utilize the scarce radio resources [1, 2]. In un-

derlay CR systems, the secondary users are allowed to coexist with

a primary link over the same resources, as long as the interference

level generated at the former is such that a given rate is guaranteed.

To this end, the secondary users are usually constrained by the so-

called interference temperature (IT), so that the interference level at

the primary receiver is limited to a maximum value.

In this paper, we consider a coexistence scenario in which a

point-to-point link (PPL) is willing to share its spectrum with an

interference channel (IC), provided that the PPL rate requirements

are satisfied. Outside the context of CR, the K-user multiple-input

multiple-output (MIMO) IC is currently receiving a great deal of at-

tention. In such channels, K transmitter communicate with their cor-

responding receivers generating interference to the unintended ones.
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Interference alignment (IA) has emerged as an interesting approach

to manage interference in such scenarios, allowing each user to com-

municate free of interference and to approach capacity in the asymp-

totic signal-to-noise ratio (SNR) regime [3]–[5]. Although there are

still many open problems regarding this technique, different studies

carried out over the last years have provided many interesting the-

oretical results [6]–[9], as well as many different algorithms to per-

form IA [10]–[17]. Among those, it is worth highlighting the inter-

ference leakage minimization algorithm (MinIL) proposed in [10].

CR with K-user IC as secondary network has been studied in

[18]–[22]. In [18], the achievable degrees-of-freedom (DoF) are

studied when the primary user performs the optimal strategy, namely,

singular value decomposition (SVD) and waterfilling power alloca-

tion, which may result in some unused eigenmodes, in which the IC

opportunistically confines the transmitted signals. On the other hand,

the authors in [19] and [20] follow the same idea but show that, if

the primary receiver cooperates and performs interference suppres-

sion decoding, the sum-rate of the IC is significantly improved with

negligible primary rate reduction. A non-iterative IA scheme is pro-

posed in [21], in which the IC is also constrained to cause zero inter-

ference to the primary. In [22] a slightly modified scenario is stud-

ied, in which the IC interferes the primary user but not the other way

around, and some level of interference is allowed. Taking this into

account, the authors of [22] propose an IA algorithm that minimizes

the interference leakage (IL) subject to IT constraint to control the

interference level at the primary, based on semidefinite relaxation

(SDP) and randomization techniques. Coexistence issues have been

also considered for other networks. For instance, in [23], the perfor-

mance degradation due to IT is analyzed for a secondary user that

coexists with multiple primary users. In [24] and [25], the trans-

mission strategy of a secondary user that shared the spectrum with a

primary is optimized subject to an explicit rate constraint on the for-

mer, which requires additional channel state information (CSI) on

the secondary transmitter. Also, single-input single-output (SISO)

or multiple access (MAC) secondary networks are considered in [26]

and [27], respectively.

In this paper, we consider the same model as in [22]. We first

show that, when the primary link transmits multiple streams, con-

straining the spatial structure of interference [28] is crucial for the

IC to achieve good sum-rate performance. To this end, we derive

transmit shaping constraints at the secondary transmitters and extend

the MinIL algorithm to incorporate such constraints. An additional

power control step is introduced to enhance the sum-rate of the IC

when the data rate requirement of the primary link is high. With

the proposed approach, the IC requires no CSI from the primary

and needs only to know the aforementioned constraints to design

the transmit directions.
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2. SYSTEM MODEL

We consider a K-user single-beam MIMO IC that coexists with a

MIMO PPL. We assume that the PPL transmitter is deployed far

from the IC, and therefore the latter receive no interference from the

former. Under this setting, and denoting by Mi and Nj the num-

ber of antennas at receiver i and transmitter j, respectively (i, j =
0, . . . , K, where i, j = 0 denotes the PPL), the signal received by

each user can be expressed as

yi = u
H
i

(

K
∑

j=1

Hijvjsj + ni

)

, i = 1, . . . ,K (1)

y0 = U
H
0

(

H00V0s0 +

K
∑

j=1

H0jvjsj + n0

)

, (2)

where Hij ∈ CNi×Mj is the MIMO channel between transmitter j
and receiver i, U0 ∈ CN0×N0 and V0 ∈ CM0×M0 are the decoding

and precoding matrices of the PPL, respectively; ui ∈ CNi×1 and

vi ∈ CMi×1 are the decoding and precoding vectors of the ith IC

user, respectively; ni ∈ CNi×1 is the noise at receiver i which is

assumed to be distributed as CN (0, σ2I) and s0 ∈ CM0×1 and sj ∈
C are the symbols transmitted by the PPL and the jth IC transmitter,

respectively, which are distributed as CN (0, I).
Let us assume that the PPL does not know the actual interfer-

ence covariance matrix and performs the optimal transmission strat-

egy, namely, SVD and waterfilling power allocation [29]. Thus, its

achievable rate as a function of the aggregate interference covariance

matrix, Q =
∑K

j=1 U
H
0 H0jvjv

H
j HH

0jU0, is given by

RPPL (Q) = log det
(

I+
(

σ2
I+Q

)−1
ΣS

)

, (3)

where ΣS is a diagonal matrix. The minimum rate constraint can

be therefore expressed as RPPL (Q) ≥ (1− α)RPPL (0), with α ∈
[0, 1].

An interesting issue that comes up at this point is related to the

knowledge that each network has about the other one and how they

cooperate with each other. In this work we consider that they have

limited knowledge about each other and the required overhead is

reduced as much as possible. More specifically, each transmitter

of the IC only needs to know its transmit covariance constraint in

order to optimize its precoders and decoders. On the other hand, the

PPL only needs to know the local channels, H0i, in order to select

suitable constraints.

3. INTERFERENCE SHAPING CONSTRAINTS

In this section we derive shaping constraints [28] for the IC to ensure

that the rate requirement at the PPL is satisfied. We assume that the

constraints are obtained by the PPL receiver, which has perfect local

CSI, and are sent to the IC through a feedback link. Typically, IT

constraints are used to control the total interference power that the

secondary users generate at the primary receiver. When the PPL uses

single-beam transmissions there is not much left to do; however, in

the multiple-stream case, how the interference is distributed among

the different streams strongly affects the achievable rate of the PPL.

To this end, we will constrain the spatial interference distribution by

using the following matrix partial orders on the set of N×N positive

semidefinite matrices

A � B ≡ B−A ∈ SN
+ , (4)

A �D B ≡ (A)
ii
≤ (B)

ii
, i = 1, . . . , N , (5)

where SN
+ is the set of N × N positive semidefinite matrices and

(A)ii denotes the ith element of the diagonal of A. Notice that (4)

is the Löwner ordering [30], whereas (5) is also a valid partial order

since it is reflexive, antisymmetric and transitive [31]. For a given α,

we first consider a constraint in the aggregate interference covariance

matrix, Q, as

Q �D Cα , (6)

where Cα ∈ SN0
+ is the interference shaping constraint, which is a

diagonal matrix since expression

det
(

I+
(

σ2
I+Cα

)−1
ΣS

)

≤

N0
∏

i=1

[

1 +
(

C̄
−1
α

)

ii
(ΣS)ii

]

,

(7)

where C̄α = σ2I + Cα, holds with equality only when C̄α is

diagonal, which is due to Sylvester’s determinant theorem and

Hadamard’s inequality. This interference shaping constraint is then

translated into a transmit covariance constraint, so that the IC re-

quires no additional CSI from the PPL, that is expressed as

vjv
H
j � Sj , j = 1, . . . ,K , (8)

where Sj ∈ S
Mj

+ is the transmit covariance constraint of user j
and such that (6) is satisfied for all possible transmit directions, vj .

The reasons for choosing the matrix partial order (5) instead of the

standard ordering (4) for the interference shaping constraint in (6)

are formalized in the following lemmas.

Lemma 1. Let L = {Q ∈ SN0
+ : Q � Cα} and D = {Q ∈

SN0
+ : Q �D Cα} for a given positive diagonal matrix Cα. Then

L ⊂ D.

Proof. Suppose that Q � Cα for a given Q. Therefore, aHQa ≤
aHCαa, for all a. Setting a an all-zero vector with a one in the

ith entry, it is clear that Q �D Cα also holds, which proves that

L ⊆ D. To prove that L is strictly a subset of D, suppose that

Q =D Cα for a given Q, i.e., (Q)ii = (Cα)ii for all i. As the

eigenvalues of any Hermitian matrix majorize its diagonal [30], it

turns out that Q � Cα, which concludes the proof.

The following lemma establishes the monotonicity of (3) with

respect to the ordering defined in (5).

Lemma 2. Let Q ∈ SN0
+ be any matrix such that Q �D Cα, for

a given positive diagonal matrix Cα. Then RPPL(Q) ≥ RPPL(Cα),
where RPPL(·) is given by (3).

Proof. To prove the lemma, we must show that the off-diagonal

elements of Q do not reduce the achievable rate when its diago-

nal is fixed. To this end, let us consider that Q =D Cα, i.e.,

Q = Cα +Θ, where Θ is any off-diagonal Hermitian matrix such

that Cα +Θ � 0. Notice that, if RPPL(Q) ≥ RPPL(Cα) holds for

all Θ, then RPPL(Q
′) ≥ RPPL(Cα) for any Q′ �D Q. The lemma

is therefore proved if the following holds

det
(

I+
(

C̄α +Θ
)−1

ΣS

)

≥ det
(

I+ C̄
−1
α ΣS

)

. (9)

Applying the determinant identities det(AB) = det(A) det(B),
for any squared matrices A and B, and det(A−1) = 1/det(A);
the foregoing expression can be equivalently given by

det
(

C̄α +ΣS +Θ
)

det
(

C̄α +ΣS

) ≥
det
(

C̄α +Θ
)

det
(

C̄α

) . (10)

As det(A) ≤
∏

i
(A)ii, with equality only when A is diagonal, and

ΣS is a diagonal matrix with positive entries, (10) holds for any Θ,

which concludes the proof.
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Algorithm 1 Algorithm for computing the interference shaping ma-

trix according to P1

Set Cα = diag(c1, . . . , cN0) = 0 and j = 1
while j ≤ N0 and RPPL(Cα) > (1− α)RPPL(0) do

∆R = Rj
PPL(cj)− (RPPL(Cα)− (1− α)RPPL(0))

if ∆R ≤ 0 then

cj = (Cmax)jj
else

cj = min
(

(ΣS)jj
2∆R−1

− σ2, (Cmax)jj
)

end if

j=j+1

end while

where Rj
PPL(a) is the rate achieved by the PPL at mode j when it

experiences an interference power of a

Note that the ordering (5) cannot be used for the transmit covari-

ance constraints since the diagonal of Q depends on the off-diagonal

elements of the transmit covariances. Finally, using Lemma 1, it is

easy to see that the transmit covariances satisfying (8) also satisfy

(6) for all Sj such that
∑K

j=1 U
H
0 H0jSjH

H
0jU0 �D Cα.

4. ALGORITHM DESIGN

In this section we propose algorithms for computing Cα and Sj ,

j = 1, . . . ,K, as well as an extension of the MinIL algorithm that

incorporates the transmit covariance constraints (8) and a power con-

trol step.

4.1. Shaping constraint design

The interference shaping constraint, Cα, must be chosen such

that RPPL (Cα) = (1− α)RPPL (0) and it is the least stringent for

the IC. To this end, we propose the following optimization problem

P1 : maximize
Cα

Tr (Cα) ,

subject to RPPL (Cα) ≥ (1− α)RPPL (0) ,

0 � Cα � Cmax ,

where (Cmax)ii = (
∑K

j=1 U
H
0 H0jH

H
0jU0)ii and zeros elsewhere.

Recall that, according to (7), the optimal Cα is a diagonal matrix.

In P1, the allowed interference power at the PPL is maximized sub-

ject to the minimum rate constraint and an additional constraint that

bounds the maximum allowed interference level at each stream to the

worst case, which is represented by each entry of Cmax. This may

occur if the transmit directions are aligned to the channels from the

transmitters to the PPL receiver. To solve this non-convex problem,

we use the ensuing lemma.

Lemma 3. Let us denote by C⋆
α = diag(c⋆1, . . . , c

⋆
N0

) the optimal

solution of P1, where c⋆j is associated to the jth weakest mode of the

PPL channel. Then, the following holds

c⋆j < (Cmax)jj ⇒ c⋆j+1 = 0 , j = 1, . . . , N0 − 1 . (11)

Proof. As Cα is diagonal, we have RPPL(Cα) =
∑

j
log[1 +

(ΣS)jj/(σ
2 + cj)]. The derivative of RPPL(Cα) with respect to

cj , ∇cjRPPL, is monotone decreasing and ∇cjRPPL ≤ ∇cj+1
RPPL

for cj = cj+1, j = 1, . . . , N0 − 1, i.e., the weaker the mode, the

more interference power it tolerates to meet a given data rate. As

the interference level is limited by Cmax, we obtain (11), which

concludes the proof.

The above lemma allows us to find the optimal solution of P1

stream-wise, as detailed in Algorithm 1. Similarly, using the solution

of P1, we propose the following convex optimization problem for

computing the transmit covariance constraints

P2 : maximize
{Sj}

K
1

K
∑

j=1

Tr (Sj) ,

subject to

K
∑

j=1

U
H
0 H0jSjH

H
0jU0 �D Cα ,

0 � Sj � I , j = 1, . . . ,K ,

where the last constraint is due to the unitary transmit power of the

secondary transmitters. Recall that P1 and P2 are both solved at

the primary user. The obtained transmit covariance constraints, Sj ,

are then sent to the IC, which performs the MinIL algorithm as de-

scribed in the next subsections. Notice that the PPL could modify

its transmission strategy to exploit the knowledge about the inter-

ference shaping constraint, Cα, which would result in a coupled

problem. For example, a worst-case optimization at the PPL would

assume that the aggregate interference covariance matrix is equal to

Cα, what would change the optimal power allocation at the PPL, but

not the transmit directions. For simplicity, we consider in this paper

that the PPL does not change its transmission strategy and we leave

further PPL optimization for future work.

4.2. Extension of MinIL algorithm

At each step of the MinIL, the precoders (decoders) are optimize

subject to norm constraints, while the decoders (precoders) are fixed,

so that the IL is successively minimized [10]. Notice that in our

model, the additional constraint affects only the design of the pre-

coders, whereas the decoders are optimized exactly as in the original

algorithm. The IL is given by

ileak =
K
∑

i=1

K
∑

j 6=i

∣

∣

∣
u
H
i Hijvj

∣

∣

∣

2

. (12)

Therefore, for fixed precoders, the unit-norm decoders that minimize

(12) are given by u⋆
i = νmin(

∑K

j 6=i
Hijvjv

H
j HH

ij ), where νmin(A)
denotes the eigenvector of A with minimum eigenvalue. On the

other hand, when the decoders are kept fixed, the optimal precoder of

the jth transmitter is obtained by solving the following optimization

problem

P3 : minimize
vj

ileak ,

subject to v
H
j vj = min(1, Tr(Sj)) ,

vjv
H
j � Sj .

To solve the foregoing problem, we first rewrite the transmit co-

variance constraint by using the following lemma.

Lemma 4. Let S ∈ SN
+ and v ∈ CN×1. Then vvH � S holds if

and only if ‖Σ− 1
2FHv‖2 ≤ 1, where S = FΣFH is the singular

value decomposition of S.

Proof. Taking the singular value decomposition of S, vvH � S is

equivalent to Σ− 1
2FHvvHFΣ− 1

2 � I. Therefore, the maximum

eigenvalue of Σ− 1
2FHvvHFΣ− 1

2 must be equal or lower than 1.

Since this matrix is rank-one, its maximum eigenvalue is given by

‖Σ− 1
2FHv‖2, which concludes the proof.
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Fig. 1. Achievable sum-rate of the (3 × 2, 1)3 IC with a 3× 3 PPL

for both interference constraints and different values of α.

Using the foregoing lemma and taking the Lagrangian of P3, we

obtain

v
⋆
j =

√

min(1,Tr(Sj))νmin

[

(1− µj)Rj + µjS
−1
j

]

, (13)

where Rj =
∑K

i6=j
HH

ijuiu
H
i Hij and µj ∈ [0, 1], which can be ob-

tained using bisection, such that the equivalent transmit covariance

constraint is satisfied with equality (if active). We omit the details

due to lack of space.

4.3. Power control

Even when the IA problem is feasible, the IC may not achieve zero

IL due to the additional shaping constraint, specially for low values

of α. In these cases it is important to control the power transmitted

by the IC to improve its sum-rate. However, if we relax the power

constraint in P3 by an inequality, we will obtain zero transmit power.

Since we do not want to reduce the IL by means solely of reducing

the transmit power, a normalizing term must be included in P3. To

this end, when the IL converges to a non-zero value, each transmitter

computes a new precoder by solving the following problem

P4 : minimize
ṽj ,pj

pj
[

ileak (ṽj)− ileak

(

v
′
j

)]

,

subject to ṽ
H
j ṽj = min(1, Tr(Sj)) ,

pjṽj ṽ
H
j � Sj ,

pj ≤ 1 ,

where ileak(vj) is the IL when the jth transmitter applies vj , and

v′
j is the precoder from the previous iteration (ileak

(

v′
j

)

is therefore

the current IL). The new precoder is then given by v⋆
j =

√

p⋆j ṽ
⋆
j ,

i.e., pj is the ratio between the transmit power and the power bud-

get of user j. In the objective function of P4, the effect on the IL

of the transmit direction and the transmit power is decoupled by

[ileak(ṽj) − ileak(v
′
j)] and pj , respectively. The optimization of the

transmit power by means of pj allows to explore other transmit di-

rections which may reduce [ileak(ṽj) − ileak(v
′
j)]. However, the op-

timal value of P4 is equal or lower than zero, and thus reducing

the transmit power may not reduce the objective function, which is

hence minimized when a compromise between the transmit direction
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Fig. 2. Achievable sum-rate of the (3× 2, 1)3 IC and the 3× 3 PPL

as a function of α for SNR = 15 dB.

and pj is reached. The new precoder, v⋆
j , is the scaled generalized

eigenvector with minimum generalized eigenvalue of the matrix pen-

cil (Rj −
v
′H
j Rjv

′

j

min(1,Tr(Sj))
I,S−1

j ). We omit the details due to lack of

space.

5. NUMERICAL RESULTS

We consider a (3 × 2, 1)3 IC and a 3 × 3 PPL, and define SNR =
10 log10(1/σ

2). The entries of the channel matrices are i.i.d. com-

plex Gaussian random variables with zero mean and unit variance.

All results are averaged over 1000 different channel realizations. For

the IT constraint we use the algorithm proposed in [22] with the

additional power control step (by solving an analogous problem to

P4) and choosing the IT constraint such that the rate requirement is

guaranteed. In Fig. 1 we show the achievable sum-rate of the IC for

different values of α and for both interference constraints. Whereas

with both constraints the rate of the PPL is guaranteed, the transmit

covariance constraint allow the IC to achieve much higher data rates

than the IT thanks to controlling the spatial interference distribution

at the PPL. Moreover, the transmit covariance constraint allows the

IC to optimize its precoders and decoders without actually knowing

the channel to the PPL. Alternatively, we depict in Fig. 2 the sum-

rate of the IC at SNR = 15 dB as a function of α, where it can

be observed the high performance improvement of the transmit co-

variance constraint over most of the range of α, showing again that

controlling the spatial structure of the interference plays an impor-

tant role when the PPL transmits multiple streams.

6. CONCLUSION

In this paper we have studied network coexistence between an IC

and a PPL in the context of CR. We have shown that controlling

the spatial structure of the interference is critical in order to pro-

vide high sum-rate to the IC, while ensuring the rate requirement

at the PPL. We have then extended the MinIL algorithm to incorpo-

rate such constraints and an additional power control step to enhance

the sum-rate of the IC. We have shown through different numerical

examples the importance of controlling the spatial structure of the

interference when the PPL transmits multiple streams.
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