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ABSTRACT

This paper considers an underlay cognitive radio network where pri-

mary and secondary networks coexist. The optimization target is

to minimize the sum power of secondary transmitters while satis-

fying the worst case minimum SINR constraint for each secondary

user (SU) and maximum aggregate interference constraint for each

primary user (PU). Imperfect channel state information (CSI) is as-

sumed, and the corresponding CSI errors are bounded by ellipsoids.

We propose an alternating direction method of multipliers-based de-

centralized beamforming algorithm which relies only on local imper-

fect CSI and limited backhaul signaling. The convergence behavior

of the proposed algorithm is studied via numerical examples.

Index Terms— Alternating direction method of multipliers,

cognitive multi-cell beamforming, underlay cognitive radio systems.

1. INTRODUCTION

The utilization of the radio spectrum can be improved by using a

well-known concept of cognitive radio (CR) [1–3]. The idea is that

cognitive secondary users (SUs) are allowed to opportunistically uti-

lize the bandwidth of licensed primary users (PUs). In many CR

approaches, secondary network aims to exploit the unoccupied fre-

quencies of the licensed band. However, higher spectrum efficiency

is provided in underlay cognitive radio networks (CRNs) where the

primary network allows the secondary network to access the occu-

pied primary bandwidth, provided that the generated interference to-

wards PUs is under tolerable threshold. Within this interference limi-

tation, secondary network can optimize its own system performance.

A wide range of algorithms has been recently proposed with various

system optimization objectives and quality-of-service (QoS) require-

ments. Most of the algorithms aim to solve one of the following op-

timization targets: the maximization of weighted sum rate [4, 5], the

maximization of weighted minimum rate/SINR [6, 7] and the mini-

mization of sum transmission power with QoS constraints [8–14].

The aforementioned algorithms require perfect channel state in-

formation (CSI) in order to operate properly. In practice, CSI is

imperfect, mainly due to errors in channel estimation and quanti-

zation. If the imperfections in the CSI are not taking into account

in the beamforming design, it may cause significant performance

degradation and violation of the QoS constraints. In the CR litera-

ture, CSI uncertainty is usually modeled by bounding all the error

realizations with a known region (e.g., spherical or ellipsoidal) [15]

or assuming that the error realizations are drawn from a known dis-

tribution [16]. Various cognitive beamforming problems with these
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error modeling approaches have been handled by either worst-case

optimization [15, 17–24] or stochastic optimization [16, 22]. Single-

cell and multi-cell CRNs were considered in [15–17, 19–22] and

[18,22–24], respectively. All these algorithms are centralized except

the one in [23]. In general, decentralized algorithms are more practi-

cal than centralized ones due their potentially simpler network struc-

ture and reduced signaling/computational loads. In [23], the sum

mean square error was minimized in underlay CRN with imperfect

CSI between secondary transmitters and PUs. However, perfect CSI

was assumed between secondary transmitters and SUs. The focus of

this paper is on the sum power minimization via the worst-case op-

timization. Beamforming designs where this non-convex problem is

reformulated as a convex one are proposed in [15,20,21,24]. In [20],

the problem is approximated conservatively leading to sub-optimal

algorithms. In [15, 21, 24], the proposed algorithms use the standard

semidefinite relaxation (SDR) method for the convex approximation.

Global optimality is guaranteed for the cases when the solution of the

approximated problem is rank-one. It was shown in [24] that rank-

one solutions can be always guaranteed for the cognitive interference

channel. Unfortunately, there are no decentralized robust algorithms

proposed in the literature for the sum power minimization problem

in multi-cell CRNs.

In this paper, we address this challenge by proposing a decentral-

ized beamforming algorithm for multi-cell multiuser MISO CRNs

where the CSI errors are bounded by ellipsoids. The non-convex

problem is reformulated as a combined consensus and sharing prob-

lem, and then, approximated as a convex SDP. To solve this problem,

we propose an alternating direction method of multipliers (ADMM)-

based algorithm, which needs only local imperfect CSI at each trans-

mitter and limited information exchange between transmitters via

backhaul. If the optimal solution, provided by the proposed algo-

rithm, is rank-one, it is also optimal for the original problem.

2. SYSTEM MODEL

Consider a CR system where a primary network with L PUs and

a secondary network with K SUs coexist. Each user is equipped

with a single antenna. Secondary network consists of B secondary

transmitters, each equipped with T antennas. For simplicity of nota-

tion, the number of primary transmitters is not explicitly presented.

Consequently, by writing ”transmitter”, we refer to the secondary

transmitter. The sets of all secondary transmitters, SUs and PUs are

denoted by B, K and L, respectively. Each SU is served by a sin-

gle transmitter, and the serving transmitter for the SU k is denoted

by bk. SU association is assumed to be fixed. The set Kb with size

|Kb| = Kb includes all the SUs served by its respective transmitter

b. The received signal at the SU k is given by

rk = hbk,kmksk +
∑

i∈Kbk
\{k} hbi,kmisi+

∑

b∈B\{bk}

∑

i∈Kb
hb,kmisi + zk

(1)
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where mk ∈ CT×1 and sk ∈ C denote the beamforming vector

and the data symbol with E[|sk|
2] = 1 for the SU k. The term

zk ∈ C with power σ2
k includes the additive noise and interference

from primary network. The first, second and third terms in (1) are the

desired signal, intra-cell and inter-cell interferences, respectively.

The channel vector from the transmitter b to the SU k is ex-

pressed as hb,k = ĥb,k + ub,k, ∀b ∈ B, ∀k ∈ K, where ĥb,k ∈
C1×T and ub,k ∈ C1×T are the estimated channel at the transmitter

and the CSI error, respectively. We assume that the CSI error is

bounded by an ellipsoid [25]: Cb,k =
{

ub,k : ub,kCb,ku
H
b,k ≤ 1

}

,

∀b ∈ B, ∀k ∈ K, where the positive definite matrix Cb,k is known

at the transmitter b, and it determines the accuracy of the CSI by

defining the shape and size of the bounding ellipsoid. The received

SINR of the kth SU is given by Γk = (
∣

∣(ĥbk,k + ubk,k)mk

∣

∣

2
)/

(σ2
k+

∑

i∈Kbk
\{k}

∣

∣(ĥbi,k + ubi,k)mi

∣

∣

2
+
∑

b∈B\{bk}
χb,k),

where
∑

b∈B\{bk} χb,k denotes the inter-cell interference caused

by the secondary transmissions of other cells. The term χb,k de-

notes the inter-cell interference power from the transmitter b to

the SU k, i.e., χb,k =
∑

i∈Kb

∣

∣(ĥb,k + ub,k)mi

∣

∣

2
. The pre-

viously introduced CSI uncertainty model is also used for the

channel vectors from the secondary transmitters to the PU. In

particular, the channel vector from the transmitter b to the PU l
is given by gb,l = ĝb,l + vb,l, ∀b ∈ B, ∀l ∈ L, where ĝb,k

and vb,l are the estimated channel and the CSI error, respectively.

Ellipsoid that bounds the CSI uncertainty is written as Db,l =
{

vb,l : vb,lDb,lv
H
b,l ≤ 1

}

, ∀b ∈ B, ∀l ∈ L, where Db,l ≻ 0, and

it is known at the transmitter. Each PU has a predefined maximum

interference power level which the aggregate interference from the

secondary network cannot exceed, i.e., Φl ≥
∑

b∈B φb,l, ∀l ∈ L,

where φb,l =
∑

i∈Kb

∣

∣(ĝb,l + vb,l)mi

∣

∣

2
denotes the interference

power from the transmitter b to the PU l. The sum power of sec-

ondary network is given by
∑

b∈B

∑

k∈Kb
tr(mkm

H
k ).

3. PROBLEM FORMULATION

In this section, we first introduce the non-convex sum power min-

imization problem. Then, we equivalently rewrite the original

problem in a form of combined consensus and sharing problem [26].

Lastly, the resulting problem is approximated as a tractable con-

vex problem via SDR [25, 27] and S-procedure [27] methods. The

optimization target is to minimize the sum power of secondary

transmitters while satisfying the minimum SINR constraints of

SUs {γk}k∈K and the maximum aggregate interference power con-

straints of PUs {Φl}l∈L. This problem can be written as

min.
{mk}k∈K,

{χb,k}b∈B,k∈K̄b
,

{φb,l}b∈B,l∈L

∑

b∈B

∑

k∈Kb

tr
(

mkm
H
k

)

s. t.
(

ĥbk,k + ubk,k

)(

1
γk

m
k
mH

k −
∑

i∈Kbk
\{k} mim

H
i

)

(

ĥbk,k + ubk,k

)H
≥ σ2

k +
∑

b∈B\{bk}
χb,k,

∀k ∈ K, ∀ubk,k ∈ Cbk,k

∑

i∈Kb

(

ĥb,k + ub,k

)

mim
H
i

(

ĥb,k + ub,k

)H
≤ χb,k,

∀b ∈ B, ∀k ∈ K̄b, ∀ub,k ∈ Cb,k
∑

i∈Kb
(ĝb,l + vb,l)mim

H
i (ĝb,l + vb,l)

H ≤ φb,l,

∀b ∈ B, ∀l ∈ L, ∀vb,l ∈ Db,l
∑

b∈B φb,l ≤ Φl, ∀l ∈ L.
(2)

The set K̄b = K \Kb consists of all the SUs except for those served

by the transmitter b. In (2), the first three sets of constraints can

be equivalently written as inequalities since they hold with equal-

ity at the optimal solution. The problem (2) is non-convex and has

infinitely many constraints due to the CSI uncertainty.

3.1. Equivalently reformulated problem

In this subsection, the original problem (2) is equivalently rewritten

as a combined consensus and sharing problem [26]. This is a key

step for achieving a decentralized algorithm via ADMM in Section

4. First, we introduce χ̃b′

b,k and φ̃b′,l as the local copies of χb,k and

φb′,l at the transmitter b′, respectively. Note that each χb,k cou-

ples exactly two transmitters, i.e., the serving transmitter bk and the

interfering transmitter b. Whereas, each φb,l couples all the trans-

mitters. Consequently, the aim of the reformulated problem is to

enforce consensus between each pair of transmitter-level copies of

χ̃b
b,k and χ̃bk

b,k, as well as, optimally share resources {φ̃b,l}b∈B,l∈L

between the transmitters. The resulting problem is expressed as

min.
{mk}k∈K,

{χb,k}b∈B,k∈K̄b
,

{φb,l,φ̃b,l}b∈B,l∈L,

{χ̃b′

b,k}b∈B,k∈K̄b,∀b′∈{bk,b}

∑

b∈B

∑

k∈Kb

tr
(

mkm
H
k

)

s. t.
(

ĥbk,k + ubk,k

)(

1
γk

m
k
mH

k −
∑

i∈Kbk
\{k} mim

H
i

)

(

ĥbk,k + ubk,k

)H
≥ σ2

k +
∑

b∈B\{bk} χ̃
bk
b,k,

∀k ∈ K, ∀ubk,k ∈ Cbk,k

∑

i∈Kb

(

ĥb,k + ub,k

)

mim
H
i

(

ĥb,k + ub,k

)H
≤ χ̃b

b,k,

∀b ∈ B, ∀k ∈ K̄b, ∀ub,k ∈ Cb,k
∑

i∈Kb
(ĝb,l + vb,l)mim

H
i (ĝb,l + vb,l)

H ≤ φb,l,

∀b ∈ B, ∀l ∈ L, ∀vb,l ∈ Db,l
∑

b∈B φb,l ≤ Φl, ∀l ∈ L

χ̃b′

b,k = χb,k, ∀b ∈ B, ∀k ∈ K̄b, ∀b
′ ∈ {bk, b}

φ̃b,l = φb,l, ∀b ∈ B, ∀l ∈ L.
(3)

3.2. Approximated problem

The problem (3) can be turned into a tractable convex form by using

the standard SDR and S-procedure methods [24, 25, 28]. Using the

SDR [25], (3) is approximated as an SDP by replacing the rank-one

matrix mkm
H
k by a semidefinite matrix Qk without a rank-one con-

straint. The resulting problem is still intractable due to the infinite

number of constraints. Since the constraints are quadratic w.r.t. the

corresponding CSI error vectors, the S-Procedure [27] can be ap-

plied to equivalently reformulate these constraints as linear matrix

inequalities (LMIs) [24]. Further details on this derivation can be

found in [24]. The resulting problem is a tractable convex SDP

min.
{Qk,αk}k∈K,

{χb,k,βb,k}b∈B,k∈K̄b
,

{φb,l,φ̃b,l,δb,l}b∈B,l∈L,

{χ̃b′

b,k}b∈B,k∈K̄b,∀b′∈{bk,b}

∑

b∈B

∑

k∈Kb

tr (Qk)

s. t. Qk � 0,∆k � 0, αk ≥ 0, ∀b ∈ B, ∀k ∈ Kb

Θb,k � 0, βb,k ≥ 0, ∀b ∈ B, ∀k ∈ K̄b

Λb,l � 0, δb,l ≥ 0, ∀b ∈ B, ∀l ∈ L
∑

b∈B φb,l ≤ Φl, ∀l ∈ L

χ̃b′

b,k = χb,k, ∀b ∈ B, ∀k ∈ K̄b, ∀b
′ ∈ {bk, b}

φ̃b,l = φb,l, ∀b ∈ B, ∀l ∈ L

(4)
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where the matrixes ∆k, Θb,k and Λb,l are denoted by

∆k ,




Ak + αkCbk,k Akĥ
H
bk,k

ĥbk,kAk ĥbk,kAkĥ
H
bk,k

−
∑

b′∈B\bk

χ̃
bk
b′,k

− σ2
k − αk





(5)

Θb,k ,

[

−Bb + βb,kCb,k −Bbĥ
H
b,k

−ĥb,kBb −ĥb,kBbĥ
H
b,k + χ̃b

b,k − βb,k

]

(6)

Λb,l ,

[

−Bb + δb,lDb,l −Bbĝ
H
b,l

−ĝb,lBb −ĝb,lBbĝ
H
b,l + φ̃b,l − δb,l

]

(7)

where Ak , 1
γk

Qk −
∑

i∈Kbk
\{k} Qi and Bb ,

∑

i∈Kb
Qi. The

sets {αk}k∈K, {βb,k}b∈B,k∈K̄b
and {δb,l}b∈B,l∈L consist of slack

variables. If global imperfect CSI is available, (4) can be optimally

solved using an SDP solver. If the optimal {Qk}k∈K are all rank-

one (i.e., the SDR is tight), then the solution of the relaxed problem

(4) is also globally optimal for the original non-convex problem (2).

In general, the solution of (4) cannot be guaranteed to be rank-one.

However, it was shown in [24] that rank-one solutions can always

be achieved in a cognitive interference channel (i.e., each transmitter

serves only a single user). In case the solution of (4) is higher-rank, a

feasible rank-one solution may be achieved via approximation meth-

ods [28]. For example, a simple approximation method in [7] can be

extended for (4). In the rest of the paper, only local imperfect CSI is

assumed to be available.

4. DECENTRALIZED BEAMFORMING DESIGN

In this section, we propose an ADMM-based decentralized algo-

rithm to solve the combined consensus and sharing problem (4). In

general, ADMM can combine the decomposability of dual decom-

position and the convergence properties of the method of multipli-

ers [26]. In particular, ADMM can converge under more general

conditions than dual decomposition, e.g., without the requirements

of strict convexity or finiteness of the objective function [26].

For simplicity of notation, we first write (4) in a compact form:

min.
{Q̄b,χ̃b,φ̃b,F̄b,χb,φb}b∈B

∑

b∈B fb
(

Q̄b, χ̃b, φ̃b, F̄b

)

s. t. χ̃b = χb, ∀b ∈ B

φ̃b = φb, ∀b ∈ B
∑

b∈B φb,l ≤ Φl, ∀l ∈ L.

(8)

We have collected all the optimization variables into transmitter

b specific matrixes and vectors: Q̄b = [QKb(1), . . . ,QKb(Kb)],

φ̃b = [φ̃b,L(1), . . . , φ̃b,L(L)]
T, φb = [φb,L(1), . . . , φb,L(L)]

T, F̄b =

[αb,βb, δb], αb = [αKb(1), . . . , αKb(Kb)]
T, βb = [βb,K̄b(1)

, . . . ,

βb,K̄b(|K̄b|)
]T, δb = [δb,L(1), . . . , δb,L(L)]

T. The elements of

the vector χ̃b are taken from the sets {χ̃b
b′,k}b′∈B\{bk},k∈Kb

and

{χ̃b
b,k}k∈K̄b

in a specific order. Similarly, the vector χb is composed

of the sets {χb′,k}b′∈B\{bk},k∈Kb
and {χb,k}k∈K̄b

using the same

ordering. The function fb is defined as

fb
(

Q̄b, χ̃b, φ̃b, F̄b

)

=







∑

k∈Kb

tr (Qk) ,
(

Q̄b, χ̃b, φ̃b, F̄b

)

∈ Sb

∞, otherwise.
(9)

The set Sb is defined as

Sb =










Q̄b, χ̃b, φ̃b, F̄b

∣

∣

∣

∣

∣

∣

∣

Qk � 0,∆k � 0, αk ≥ 0,
∀k ∈ Kb

Θb,k � 0, βb,k ≥ 0, ∀k ∈ K̄b

Λb,l � 0, δb,l ≥ 0, ∀l ∈ L











.
(10)

The first step in ADMM is to write the augmented Lagrangian

[26]. The (partial) augmented Lagrangian for (8) is given by

Lρ

(

{

Q̄b, χ̃b, φ̃b, F̄b,χb,φb,µb,νb

}

b∈B

)

=
∑

b∈B

(

fb(Q̄b, χ̃b, φ̃b, F̄b) + µT
b (χ̃b − χb)

+ν
T
b (φ̃b − φb) +

ρ

2

∥

∥χ̃b − χb

∥

∥

2

2
+

ρ

2

∥

∥φ̃b − φb

∥

∥

2

2

)

(11)

where µb and νb are the dual variables associated with the inter-

ference equality constraints of (8). The last two terms of (11) are

quadratic penalty terms with penalty parameter ρ > 0, and they

penalize for the violation of the equality constraints of (8). The aug-

mented Lagrangian (11) can be seen as a standard Lagrangian of (8)

where the quadratic penalty terms are added to the objective func-

tion. Due to the added penalty terms, ADMM is able to converge

without the need of strict convexity or finiteness of the original ob-

jective function of (8). ADMM operates iteratively via the following

steps: 1) update of local primal variables, 2) update of global primal

variables and 3) update of local dual variables. At iteration t + 1,

these steps are given by

Q̄
t+1
b , χ̃t+1

b , φ̃
t+1

b , F̄t+1
b

= argmin
Q̄b,χ̃b,φ̃b,F̄b

Lρ(Q̄b, χ̃b, φ̃b, F̄b,χ
t
b,φ

t
b,µ

t
b,ν

t
b), ∀b ∈ B

(12)

{χt+1
b ,φt+1

b }b∈B

= argmin
{χb,φb}b∈B

Lρ({Q̄
t+1
b , χ̃t+1

b , φ̃
t+1

b , F̄t+1
b ,χb,φb,µ

t
b,ν

t
b}b∈B)

(13)

µ
t+1
b = µb + ρ(χ̃t+1

b − χ
t+1
b ), ∀b ∈ B (14)

ν
t+1
b = νb + ρ(φ̃

t+1

b − φ
t+1
b ), ∀b ∈ B. (15)

The steps (12), (14) and (15) are separable between transmitters, and

thus, they can be solved independently in parallel at each transmitter.

The step (13) needs network-level coordination, i.e., information ex-

change between transmitters via backhaul. In particular, transmitter

b signals the local copies χ̃t+1
b and φ̃

t+1

b to the coupled transmitters.

Next, we explain how to optimally solve the steps (12) and (13).

The local primal variables in (12) are updated by solving the

following problem

min.
Q̄b,χ̃b,φ̃b,F̄b

fb(Q̄b, χ̃b, φ̃b, F̄b) +
ρ

2

∥

∥χ̃b − χ
t
b + v

t
b

∥

∥

2

2

+
ρ

2

∥

∥φ̃b − φ
t
b +w

t
b

∥

∥

2

2
.

(16)

For simplicity of presentation, we have used the scaled ADMM

formulation [26] in (16) by combining the linear and quadratic

terms of (11): (µt
b)

T(χ̃b − χt
b) + ρ

2

∥

∥χ̃b − χt
b

∥

∥

2

2
= ρ

2

∥

∥χ̃b −

χt
b + vt

b

∥

∥

2

2
− ρ

2

∥

∥vt
b

∥

∥

2

2
and (νt

b)
T(φ̃b − φt

b) +
ρ

2

∥

∥φ̃b − φt
b

∥

∥

2

2
=

ρ

2

∥

∥φ̃b −φt
b +wt

b

∥

∥

2

2
− ρ

2

∥

∥wt
b

∥

∥

2

2
, where vt

b =
1
ρ
µt

b and wt
b =

1
ρ
νt
b.

The last constant terms were dropped from (16) since they do

not have any impact on finding the optimal points. The problem

(16) can be recast as an SDP via the following steps. After writ-

ing (16) in the epigraph form [27], the resulting quadratic constraint

7360



∑

k∈Kb
tr (Qk)+

ρ

2

∥

∥χ̃b−χt
b+vt

b

∥

∥

2

2
+ ρ

2

∥

∥φ̃b−φt
b+wt

b

∥

∥

2

2
−qb ≤ 0

can be reformulated as an SOC constraint [29]: ‖yb‖2 ≤ xb,

where yb = [(1 + (
∑

k∈Kb
tr (Qk) − qb))/2,

√

ρ

2
(χ̃b − χt

b +

vt
b)

T,
√

ρ

2
(φ̃b − φt

b +wt
b)

T]T and xb = (1− (
∑

k∈Kb
tr (Qk)−

qb))/2. Now the SOC constraint can be written as a linear matrix

inequality (LMI) form [30]. The optimal points Q̄⋆
b , χ̃⋆

b and φ̃
⋆

b are

found by solving the resulting SDP

min.
Q̄b,χ̃b,φ̃b,F̄b,qb

qb

s. t.

[

xb yH
b

yb xbI

]

� 0, ∀k ∈ Kb

Qk � 0,∆k � 0, αk ≥ 0, ∀k ∈ Kb

Θb,k � 0, βb,k ≥ 0, ∀k ∈ K̄b

Λb,l � 0, δb,l ≥ 0, ∀l ∈ L.

(17)

Now the local primal variables can be updated: Q̄t+1
b = Q̄⋆

b ,

χ̃t+1
b = χ̃⋆

b and φ̃
t+1

b = φ̃
⋆

b .

The global primal variables in (13) are updated with the optimal

points of the following problem

min.
{χb,φb}b∈B

∑

b∈B

(

(µt
b)

T(χ̃t+1
b − χb) +

ρ

2

∥

∥χ̃t+1
b − χb

∥

∥

2

2

+(νt
b)

T(φ̃
t+1

b − φb) +
ρ

2

∥

∥φ̃
t+1

b − φb

∥

∥

2

2

)

s. t.
∑

b∈BS φb,l ≤ Φl, ∀l ∈ L.
(18)

Since the objective and constraint functions of (18) are separable

in χb and φb, these variables can be solved independently. Since

the optimization problem is unconstrained and quadratic in χb, the

optimal point χ⋆
b is found by setting the gradient of (18) w.r.t. χb to

zero. The resulting solution is expressed in component wise as

χ⋆
b,k =

1

2

(

χ̃b,t+1
b,k + χ̃

bk,t+1
b,k +

1

ρ
(µb,t

b,k + µ
bk,t

b,k )

)

(19)

and the update is χt+1
b,k = χ⋆

b,k. Note that µb,t
b,k + µ

bk,t

b,k = 0 by

substituting χt+1
b,k in (14). Hence, χt+1

b,k -update simplifies to χt+1
b,k =

1/2(χ̃b,t+1
b,k + χ̃

bk,t+1
b,k ). The optimal point φ⋆

b is found by solving

the following convex quadratic optimization problem

min.
{φb}b∈B

∑

b∈B

(

(νt
b)

T(φ̃
t+1

b − φb) +
ρ

2

∥

∥φ̃
t+1

b − φb

∥

∥

2

2

)

s. t.
∑

b∈B φb,l ≤ Φl, ∀l ∈ UP.
(20)

The update is φt+1
b = φ⋆

b . Using the updated primal variables, the

local dual variables can be updated as presented in (14) and (15).

Finally, the proposed decentralized ADMM-based beamforming ap-

proach is summarized in Algorithm 1.

With the standard assumptions for ADMM [26], Algorithm 1

converges to the optimal solution of (8). Note that Algorithm 1 does

not necessarily provide a feasible beamforming solution for the orig-

inal primal problem (8) at intermediate iterations. This is due to an

inherent characteristic of the ADMM that the local copies of the op-

timization variables, i.e., the interference terms, are not necessarily

required to be equal at intermediate iterations leading to a violation

of the QoS constraints. However, a feasible set of beamformers may

be achieved at each iteration by enforcing consistency between the

local interference values. This can be done by fixing χ̃b = χb and

φ̃b = φb, and solving (17) at the transmitter b, ∀b ∈ B. At a

cost of sub-optimal performance, Algorithm 1 can be stopped at any

(primal) feasible iterate to reduce delay and signaling/computational

load. If the optimal solution of Algorithm 1 is rank-one, it is also

globally optimal for the original non-convex problem (2).

Algorithm 1 ADMM-based decentralized beamformer design

1: Set t = 0, µ0
b = 0, χ0

b = 0, ν0
b = 0 and φ0

b = 0.

2: repeat

3: Transmitter b, ∀b ∈ B: Update local primal variables

Q̄t+1
b = Q̄⋆

b , χ̃t+1
b = χ̃⋆

b and φ̃
t+1

b = φ̃
⋆

b by solving (17).

4: Transmitter b, ∀b ∈ B: Signal local copies χ̃t+1
b and φ̃

t+1

b to

the coupled transmitters via backhaul links.

5: Transmitter b, ∀b ∈ B: Update global primal variables

χt+1
b = χ⋆

b and φt+1
b = φ⋆

b via (19) and (20), respectively.

6: Transmitter b, ∀b ∈ B: Update local dual variables µt+1
b and

νt+1
b by solving (14) and (15), respectively. Set t = t+ 1.

7: until stopping criterion is satisfied
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Fig. 1. Convergence behavior of Algorithm 1.

5. SIMULATION RESULTS

In this section, the performance of Algorithm 1 is evaluated via nu-

merical examples. The simulation model consists of B = 2 sec-

ondary transmitters, K = 4 SUs and L = 2 PUs. Each secondary

transmitter serves a predefined set of two SUs. Each user is equipped

with a single antenna, and each transmitter with T = 8 antennas.

Each channel realization is uncorrelated and Rayleigh faded. The

CSI errors are bounded by spherical regions, i.e., Cb,k =
(

1/ǫ2
)

IT

and Db,l =
(

1/ǫ2
)

IT , ∀b ∈ B, ∀k ∈ K, ∀l ∈ L, and ǫ = 0.1. The

SINR and interference constraints are: γk = γ = 0 dB, ∀k ∈ K
and Φl = Φ = −10 dB, ∀l ∈ L. The power of zk is set to 1 for

each SU, i.e., σ2
k = σ2 = 1, ∀k ∈ K. Fig. 1 illustrates the nor-

malized sub-optimality of Algorithm 1 as a function of iteration t.
The normalized sub-optimality is defined as

(

dt − d⋆
)

/d⋆, where

dt and d⋆ denote the value of the objective function at iteration t
in Algorithm 1 and the optimal objective value achieved by solving

the centralized problem (4), respectively. Results demonstrate that

the speed of convergence depends heavily on the choice of penalty

parameter ρ. One can see that with ρ = 2 convergence is relatively

fast. In Fig. 1, all the converged optimal solutions are rank-one, and

thus, they are also globally optimal for the original problem (2).

6. CONCLUSIONS

In this paper, we proposed an ADMM-based decentralized robust

algorithm for the sum power minimization in a cognitive multi-cell

multiuser MISO network. In the proposed algorithm, each transmit-

ter solves its corresponding optimization problems independently in

parallel relying only on local imperfect CSI and limited backhaul

signaling between transmitters. Numerical examples demonstrated

relatively fast convergence for the proposed decentralized algorithm.
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[12] H. Pennanen, A. Tölli, and M. Latva-aho, “Decentralized coor-

dinated downlink beamforming for cognitive radio networks,”

in Proc. IEEE 22nd Int. Symp. Pers. Indoor and Mobile Radio

Commun., Toronto, Canada, 2011, pp. 566–571.

[13] R. Ramamonjison and V.K. Bhargava, “Distributed beamform-

ing in cognitive multi-cell wireless systems by fast interference

coordination,” in Proc. IEEE 23rd Int. Symp. Pers. Indoor and

Mobile Radio Commun., Sydney, Australia, 2012, pp. 2208–

2213.
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