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Abstract—In this paper, we investigate robust resource allo-
cation for cognitive radio networks. First, a resource allocation
scheme based on stable matching is developed, which takes the
preferences of both secondary users and primary users into
account. To improve its robustness, we then discuss an ϵ-stable
resource allocation scheme. With the help of the properties of
ϵ-stable resource allocation, three edge-cutting algorithms are
proposed. Numerical results show that the modified algorithms
are robust to the channel state information variation.

Index Terms—Cognitive radio (CR) network, stable matching,
robustness, edge-cutting

I. INTRODUCTION

To improve the spectrum efficiency of wireless networks,
cognitive radio (CR) technology has been developed [1], [2],
where secondary users (SUs) are allowed to use the licensed
spectrum bands as long as they do not generate unacceptable
interference to the primary users (PUs). Due to coexistence of
PUs and SUs, appropriate resource allocation is important to
better utilize spectrum.

There are different types of resource allocation schemes
for CR networks. Traditional schemes aim at optimizing the
sum/average utilities of SUs, such as throughput and energy
efficiency, for given interference constraints to the PUs [3]–[5].
If competition feature among SUs is considered, game theory
is commonly used for solving this type of problems [6]–[8].
Besides considering the SUs’ performance only, the activities
of PUs can also be considered jointly in the resource allocation
[9] to further optimize the system. One typical scenario is
spectrum trading [10], where PUs benefit from selling/renting
their own spectrum bands to SUs. However, existing resource
allocation schemes mainly focus on the design based on a
fixed system condition while the robustness to the variation of
the system condition is seldom investigated.

In this paper, we investigate robust resource allocation using
graph theory. First, by taking both SUs and PUs preference
lists into account, resource allocation is performed based on
the Gale-Shapley stable matching algorithm. To improve the
robustness of resource allocation, a truncated Gale-Shapley
algorithm is studied. Upper bounds on the number of rounds
needed to reach ϵ-stable and (1 + ϵ)-approximation of stable
resource allocation are derived, respectively. Motivated by our
analytical results, we develop three edge-cutting algorithm-
s to further improve the robustness of resource allocation.
Numerical results show that our proposed algorithms can
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provide robust resource allocation results to the channel state
information (CSI) variation while keeping the utility gap from
stable resource allocation small.

II. SYSTEM MODEL

We consider an underlay CR network with multiple chan-
nels/bands, where PUs have priorities to use N spectrum chan-
nels/bands while M SU pairs want to transmit simultaneously.
All channels are modeled as Rayleigh block fading channels.
Without loss of generality, we assume the j-th PU uses the
j-th spectrum band. The channel between the i-th SU pair
on the j-th spectrum band and the interference channel from
the i-th SU transmitter to the j-th PU receiver are denoted as
hi,j and gi,j , respectively. The transmit power of the i-th SU
transmitter on the j-th spectrum band is Pi,j . The noise power
on all spectrum bands is assumed to be the same, denoted as
σ2. A centralized system is assumed, where the control center
knows CSI and allocates resources based on it. For each SU,
the control center may know CSI of all or a part of spectrum
bands. Any SU can only be allocated on the spectrum bands
that the CSI is available, including both CSI between the SU
pairs and of the interference channel from the SU transmitter
to the PU receiver. Correspondingly, the number of spectrum
bands available for the i-th SU is denoted as ∆s,i and the the
number SUs available for the j-th spectrum band is denoted as
∆p,j . If not otherwise specified, the discussion involved CSI
is only for spectrum bands and SUs that CSI is available at
the control center. We consider the scenario that only one SU
pair is allowed on each spectrum band and each SU pair can
only access at most one spectrum band.

To protect PUs, the interference signal power generated
by SUs on the j-th spectrum band should be below a given
threshold, that is,

Ii,j = Pi,j |gi,j |2 ≤ Ith, ∀i, j, (1)

where Ith is the interference threshold1. Moreover, due to
the amplifier capacity limit, each SU transmitter has a peak
transmit power constraint, P , that is,

Pi,j ≤ P, ∀i. (2)

When performing resource allocation to SUs, we jointly
consider benefits of PUs by incorporating the concept of

1Without loss of generality, we assume the interference threshold is same on
all the spectrum bands for simplicity. The results can be directly extended to
the system with different interference thresholds on different spectrum bands.
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spectrum trading into the utility function design [10]. PUs will
charge more from SUs if better performance is provided to
SUs. On the other hand, performance of PUs will degrade
if SUs generate strong interference. Therefore, while SUs
improve their own performance by increasing their transmit
powers, they should also get penalties for generating stronger
interference. To capture the features of both PUs and SUs, we
will use the following utility function,

wi,j(Pi,j) = cs log2

(
1 +

|hi,j |2Pi,j

σ2 + Ipj,i

)
− cpPi,j |gi,j |2, (3)

if the i-th SU uses the j-th spectrum band, where cs and cp are
weight factors. Ipj,i denotes the interference from the j-th PU
to the i-th SU receiver. We assume the interference powers,
Ipj,i, are known since the PUs’ transmit powers keep same with
and without SUs’ transmission and then, Ipj,i can be estimated
in advance. Even though we will use utility in (3) for resource
allocation in this paper, the developed approaches can be also
used for other utility functions.

The transmit power, Pi,j , can be optimized to maximize the
utility function subject to constraints in (1) and (2). Since the
utility function in (3) is a concave function of Pi,j , the optimal
transmit power, P ∗

i,j , is

P ∗
i,j =

(
min

{
cs

cp|gi,j |2
−

σ2 + Ipj,i
|hi,j |2

, P,
Ith

|gi,j |2

})+

, (4)

where (x)+ = max{0, x}. Then, if the i-th SU is allocated
on the j-th spectrum band to transmit, the utility value of the
i-th SU and the j-th PU can be expressed as wi,j(P

∗
i,j).

III. RESOURCE ALLOCATION BASED ON STABLE
MATCHING

As indicated before, we will focus on resource allocation
based on graph theory by taking both PUs’ and SUs’ prefer-
ences into account. We first describe our resource allocation
scheme based on stable matching, which has similar idea as
in [11], and then discuss properties of the proposed stable
resource allocation scheme.

As shown in Fig. 1, we start with constructing a bipartite
graph with bipartitions V1, V2, where nodes in V1 represent
SU pairs and nodes in V2 represent spectrum bands/PUs. A
edge is put between the i-th SU in V1 and the j-th PU in V2

if the CSI of the i-th SU on the j-th spectrum band is known
at the control center. Then, the common utility value of the
i-th SU and the j-th PU, wi,j(P

∗
i,j), is associated with the

corresponding edge.

1 2 3 4 5

1 2 3 4 5 6

SUs (    )

PUs (    )

Fig. 1. Bipartite graph illustration with M = 5 and N = 6.

We then define preference lists for all SUs and PUs. For
completeness, set wi,j(P

∗
i,j) = 0 if the CSI of the i-th SU on

the j-th spectrum band is not available. For the i-th SU, its
preference list is defined as

Ls
i = [js1 , ..., j

s
N ], (5)

where js1 , ..., j
s
N is a permutation of 1, ..., N satisfying

wi,js1
(P ∗

i,js1
) ≤ ... ≤ wi,jsN

(P ∗
i,jsN

). (6)

Similarly, the j-th PU’s preference list is defined as

Lp
j = [ip1, ..., i

p
M ], (7)

where ip1, ..., i
s
M is a permutation of 1, ...,M satisfying

wip1 ,j
(P ∗

ip1 ,j
) ≤ ... ≤ wipM ,j(P

∗
ipM ,j). (8)

We call the i-th SU and the j-th PU is a matched pair if the
i-th SU pair is assigned to transmit on the j-th spectrum band,
denoted as (i, j). Two matched pairs (i, k) and (t, j) (i ̸= t
and k ̸= j) are unstable if the i-th SU prefers the j-th spectrum
band to the k-th spectrum band while the j-th PU prefers the
i-th SU to the t-th SU, i.e., wi,j > wi,k and wi,j > wt,j ;
the pairs (i, k) and (t, j) are unstable because the pair (i, j)
improves the preferences of both i-th SU and j-th PU.

Based on the above definitions, we can find a stable resource
allocation, i.e., no unstable matched pair, by using the Gale-
Shapley algorithm [12]. The Gale-Shapley algorithm runs
many rounds to get stable resource allocation, where each
round consists of a proposing and a answering procedure. It
can be operated in two different ways: the PU-proposing way
where PUs propose to SUs and the SU-proposing way where
SUs propose to PUs. The Gale-Shapley algorithm is originally
developed for the case that the number of SUs equals the
number of spectrum bands ,i.e., M = N . It can be easily
generated to the case when M ̸= N . For example, when the
number of SUs exceeds the number of spectrum bands, i.e.,
M > N , we can add (M − N) virtual spectrum bands/PUs
and put them at the end of SUs’ preference lists. Virtual PUs’
preference lists can be constructed randomly. Based on the
stable matching results, the SUs assigned on the original N
spectrum bands can transmit while the SUs assigned on the
virtual spectrum bands cannot. We can treat the issue similarly
when the number of SUs is less than the number of PUs.

Given one stable resource allocation, denoted as S, its
utility, denoted as wS , is defined as the sum utilities of
SUs/PUs based on it. Note that the sum utilities of SUs and
PUs based on a given resource allocation are the same since a
common utility is used for any matched pairs. For the proposed
resource allocation, we have the following theorems.

Theorem 1. Based on our operations, the final stable resource
allocation has maximum sum/average weight among all pos-
sible stable resource allocations. Moreover, the utilities of the
PU-proposing and the SU-proposing schemes are the same.

Due to the space limitation, we omit the proofs. Note
that, even though the final stable resource allocation of the
PU-proposing and the SU-proposing schemes have the same
sum/average utility, the resource allocation results may dif-
ferent. In the PU-proposing algorithm, each PU is matched
to the best possibility and each SU is matched to the worst
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possibility among all stable matchings; in the SU-proposing
algorithm, vice versa. We can choose one of them according
to the practical requirements. To simplify the discussion, we
focus on the PU-proposing algorithm in the rest of the paper.
The stable resource allocation and its utility based on the PU-
proposing Gale-Shapley algorithm are denoted as G and wG ,
respectively.

IV. ALMOST STABLE RESOURCE ALLOCATION

In the previous section, we propose a stable resource allo-
cation scheme for given preference lists based on the Gale-
Shapley algorithm and discuss its properties. However, the
stable matching results are not robust to CSI variation. CSI
variation of one channel may lead to a totally different stable
matching result, which is not preferable practically.

To increase the robustness of the resource allocation, a
truncated Gale-Shapley algorithm is considered here, which
increases the robustness of resource allocation by allowing
some unstable matched pairs. Instead of running the Gale-
Shapley algorithm for many rounds to get stable resource
allocation, the truncated Gale-Shapley algorithm outputs a re-
source allocation result after a fixed number of rounds. Denote
the number of rounds when the algorithm is terminated as T .
From [13], based on the truncated Gale-Shapley algorithm,
a change of CSI of one node will only affect the part of
resource allocation M within distance 2T from the node of the
change. Comparing with the stable resource allocation where a
change of CSI of one node may affect all nodes in the system,
allocation based on the truncated Gale-Shapley algorithm is
much more robust to the CSI variation.

Based on the truncated Gale-Shapley algorithm, the result-
ing resource allocation may not be stable. To measure the
stability of a resource allocation result, the concept called as
ϵ-stable, or almost stable, is introduced. A resource allocation
M is called as an ϵ-stable resource allocation if the number
of unstable matched pairs in M is at most ϵ|M|, where |M|
is the number of matched pairs. From [13], to find an ϵ-
stable resource allocation, the number of required rounds, T ,
is upper bounded by 2 + ∆2/ϵ, where ∆ is the maximum
number of edges connected to any of SUs and PUs, i.e.,
∆ = max{∆s,i,∆p,j}, ∀i, j. Based on the procedure in
[13], we can further restrict the upper bound in the following
theorem by using the maximum number of edges connected
to any of SUs, i.e., ∆s = max{∆s,i}, instead of both SUs
and PUs.

Theorem 2. We can find an ϵ-stable resource allocation in T
rounds, where T ≤ 2 + ∆2

s/ϵ and ∆s = max{∆s,i}.

Besides the stability property, we also concern about the
utility of resource allocation. A resource allocation, M, is
called as a (1 + ϵ)-approximation of the maximum-weight
stable matching if its utility wM satisfying (1+ ϵ)wM ≥ wG ,
where G is the stable resource allocation based the Gale-
Shapley algorithm and wG is the corresponding utility. For
the truncated Gale-Shapley algorithm, we have the following
conclusion regarding to its utility.

Theorem 3. We can find a (1 + ϵ)-approximation of the

maximum-weight stable resource allocation in T rounds,
where T ≤ 2 + ∆s/ϵ.

There is another conclusion regarding to the utility based the
truncated Gale-Shapley algorithm in [13], which compares the
result with the maximum-weight resource allocation instead of
stable resource allocation. In our studied scenario, it is more
reasonable to compare with other stable resource allocation.

V. EDGE-CUTTING FOR ROBUSTNESS DESIGN

From the discussions in the last section, the robustness
of resource allocation based on the truncated Gale-Shapley
algorithm depends on the number of rounds it runs before
termination, T . Smaller T leads to higher robustness, and
vice versa. Since the exact number of T satisfying ϵ-stable
and (1 + ϵ)-approximation depends on the instantaneous CSI,
we focus on reducing the upper bounds of T instead. From
Theorems 2 and 3, the upper bounds of T for satisfying
ϵ-stable and (1 + ϵ)-approximation are both related to the
maximum number of available bands of any SU, ∆s. Both
upper bounds can be decreased by decreasing ∆s. Thus, for
improving robustness of resource allocation, a small ∆s is
preferable. It is possible that SUs only access CSI of a small
number of PU bands, and ∆s is small naturally. However,
PUs, in order to improve their own utilities, may be willing to
share their information with SUs to attract more SUs, as in the
spectrum trading scenario. In this case, the maximum number
of bands available at SUs, ∆s, may be large. Note that, the
number of available bands for the i-th SU is the number of
edges connected to it in the constructed bipartition graph. For
robustness design, we propose three edge-cutting algorithms
to eliminate the maximum number of edges connected to SUs,
∆s. In other words, if the number of available bands at the i-th
SU, ∆s,i, is larger than a given threshold, denoted as ∆max

c , it
will be asked to give up some bands before running resource
allocation schemes.

One way to reduce the maximum number of edges connect-
ed to SUs, ∆s, is to eliminate edges based on SUs’ preference
lists. If the required maximum number of edges connected to
SUs after edge-cutting is ∆max

c , each SU can keep ∆max
c

edges on the top of their preference lists. This is called as
SU-preferred edge-cutting algorithm.

On the other hand, the edge-cutting can be done based
on PUs’ preference lists. We first provide a preference value
on the edge between the i-th SU and the j-th PU, denoted
as ti,j . If the i-th SU is the k-th element on the j-th PU’s
preference list, set ti,j = k. Then, for any SU, it can keep
∆max

c edges that have highest preference values. For the
edges that have same preference value, we can choose them
randomly. Thus, those edges on the top of PUs’ preference lists
will be kept. This approach is called as PU-preferred edge-
cutting algorithm. Note that, this approach also eliminates the
maximum degree of all SUs, not PUs.

Besides the edge-cutting based on either SUs’ or PUs’
preference lists, it can be also done based on the preference
lists of both sides, which is called as a double-preferred edge-
cutting algorithm. We set a preference value for each edge. For
the edge between the i-th SU and the j-th PU, set tpi,j = k
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if the i-th SU is the k-th element on the j-th PU’s preference
list and set tsi,j = l if the j-th PU is the l-th element on
the i-th SU’s preference list. Then, we set a preference value
on the edge between the i-th SU and the j-th PU as the
weighted sum of tpi,j and tsi,j , which can be expressed as
ti,j = pst

s
i,j + ppt

p
i,j , where ps and pp are positive weight

factors that satisfy ps+pp = 1. Based on the preference value,
at any SU, ∆max

c edges that have highest preference values
will be kept. The weight factors can be adjusted according to
the priorities of SUs’ and PUs’ preference lists. When ps = 1
and pp = 0, this is equivalent to a SU-preferred edge-cutting
while it is a PU-preferred edge-cutting when ps = 0 and
pp = 1.

Note that, in addition to improving the robustness of
resource allocation, edge-cutting also reduces computational
complexity.

VI. NUMERICAL RESULTS

In this section, numerical results are presented to demon-
strate the performance of the proposed algorithms. Here,
we consider the case with 200 SUs and 200 PUs, i.e.,
M = N = 200 and assume all CSI is known. Except stable
resource allocation, all other algorithms are truncated when
the corresponding resource allocation satisfying ϵ-stable and
its an (1 + ϵ)-approximation of their corresponding bipartite
graphs. Results are averaged by 20,000 trails. For each trail,
algorithms are conducted once based on the original CSI and
then, conducted another time by changing CSI of 5 SUs.
For a resource allocation scheme, smaller resource allocation
variation means higher robustness. All figures show relative
results compared to the stable resource allocation without
edge-cutting. For all results, we set the signal-to-noise ratios
(SNRs) between any SU pair and any interference channel
from SU transmitter to the PU receiver as −10dB and −15dB,
respectively. Interference threshold is −3dB and the maximum
transmit power is 10dB.

Fig. 2 shows the impact of ϵ on the utility and the SU alloca-
tion variation performance. The maximum available bands for
each SU after edge-cutting is set to be ∆max

c = 20. Comparing
with the stable resource allocation, the edge-cutting algorithms
can decrease SU allocation variations by 45% while keeping
0.05-stable and 1.05-approximation of the stable resource
allocation. Comparing three edge-cutting algorithms, the SU-
preferred algorithm has lowest SU allocation variation, that
is, it has highest robustness, while it has largest utility gap
compared to stable resource allocation. On the other hand,
the PU-preferred algorithm is the least robust one while it
has smallest utility gap from stable resource allocation. The
double-preferred edge-cutting algorithm can provide a tradeoff
result.

Fig. 3 shows the impact of the maximum number of
available bands for each SU after edge-cutting, ∆max

c , on
the performance of the utility and the SU allocation variation,
where ϵ = 0.01. The decrease of ∆max

c increases the utility
gap from stable resource allocation while it increases the
robustness as well. Practically, a suitable maximum number
of available bands for each SU, ∆max

c , can be chosen to

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4

5
(a) Utility Gap

ε

P
e
rc

e
n
ta

g
e
 (

%
)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

10

20

30

40

50

ε

P
e
rc

e
n
ta

g
e
 (

%
)

(b) SU Allocation Variation Saving

Truncation only

Truncation only, change

PU−preferred

PU−preferred, change

SU−preferred

SU−preferred, change

Double−preferred

Double−preferred, change

Truncation only

PU−preferred

SU−preferred

Double−preferred

Fig. 2. The impact of ϵ.
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VII. CONCLUSIONS

In this paper, we study robust resource allocation for CR
networks. First, we develop a resource allocation scheme
based on stable matching, which takes both SUs’ and PUs’
preferences into account. We then discuss the properties of
almost stable resource allocation, which is more robust to the
CSI variation than stable resource allocation. Based on the
properties on almost stable resource allocation, we propose
three edge-cutting algorithms to further improve the robustness
of the resource allocation scheme. Numerical results show our
proposed schemes are robust to the CSI variations.
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