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ABSTRACT

Transmit beamforming is an effective way to enhance transmission

range and quality of service while limiting interference to other co-

channel systems, thus facilitating easier coexistence. Transmit beam-

forming requires channel state information to be acquired at the re-

ceiver and fed back to the transmitter. This in turn requires a rel-

atively complex receiver, agreement on a training protocol, and a

cold-start training period during which no payload is sent to the re-

ceiver. This article explores how the transmitter can learn to beam-

form on-the-fly from very low-rate channel quality indicator bits

fed back from the receiver, while transmitting payload at the same

time. The setup is tuned to low-latency scenarios where the receiver

has limited capabilities, and is paired up opportunistically with the

transmitter. Leveraging the Analytic Center Cutting Plane Method

(ACCPM), an online channel correlation matrix learning method is

developed, based on one-bit Signal to Noise Ratio (SNR) feedback

from the receiver. The method is shown to asymptotically achieve

the maximum possible SNR at the receiver (attained with perfect

knowledge of the correlation matrix), starting from no channel state

information. A Maximum Likelihood (ML) formulation is also de-

veloped for the case when there are feedback errors, and conditions

for its asymptotic convergence are derived.

Keywords: Transmit beamforming, spatial channel correlation,

online learning, cutting plane method, maximum likelihood.

1. INTRODUCTION

Transmit beamforming is a communication technique using multi-

ple transmit antennas to steer radiated power towards directions that

provide good quality of service (QoS) to a desired receiver [1]. The

resulting link gain can be used to boost the reach or the informa-

tion rate, while limiting interference to nearby co-channel systems -

thereby facilitating coexistence, which is crucial for frequency reuse

and dynamic spectrum access applications. The price paid is the

need for channel estimation at the receiver, and channel state feed-

back to the transmitter.

In order to mitigate the signaling overhead, the channel corre-

lation matrix is what is usually estimated at the receiver (instead of

the instantaneous channel vectors) and fed back to the transmitter.

This enables long-term average Signal to Noise Ratio (SNR) opti-

mization, but still requires a receiver capable of performing rela-

tively sophisticated computations. Another issue is that a cold-start

(or periodic re-training) implies a black-out period, during which no

payload is sent to the receiver, which is a concern for low-latency
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applications such as voice and streaming. Finally, the traditional ap-

proach requires prior agreement on a training protocol, which may

not be possible with legacy systems or when the transmitter and the

receiver are paired up opportunistically.

In the special case of Multiple-Input Single-Output (MISO) sys-

tems (multiple antennas at the transmitter and a single antenna at the

receiver), the average received SNR can be maximized by aligning

the transmit beamforming vector with the direction of the princi-

pal eigenvector of the channel correlation matrix [2]. Existing ap-

proaches for designing long-term transmit beamforming vectors as-

sume knowledge of the channel correlation matrix (or its principal

eigenvector) at the transmitter, obtained through receiver-side es-

timation and feedback to the transmitter. Taking advantage of the

linear relationship between the received data correlation matrix and

the channel correlation matrix, a linear least-squares channel corre-

lation matrix estimator for Multiple-Input Multiple-Output (MIMO)

systems was proposed in [3], assuming training symbols are avail-

able. After estimating the channel correlation matrix, the receiver

may compute its principal eigenvector using, e.g., the power method,

and feed back a quantized version of the principal eigenvector in-

stead of the channel correlation matrix. A codebook design criterion

for directly quantizing transmit beamforming vectors using Grass-

manian line packing has been proposed by Love et al. [4], where

bounds were derived on the codebook size needed for a given ca-

pacity or SNR loss. The approach in [4] was developed for instanta-

neous feedback, but it can be extended [4] to long-term feedback. Ei-

ther way, the receiver needs enough computational power to perform

channel estimation, and vector quantization or principal component

computation. The method in [4] further assumes that the beamform-

ing codebook has already been communicated to the transmitter.

This article takes a fresh look at this problem and considers

the case where the receiver has limited computational capabilities,

and/or is paired up opportunistically with the transmitter. It explores

how the transmitter can learn to beamform on-the-fly from very low-

rate channel quality indicator bits fed back from the receiver, while

simultaneously transmitting payload. Towards this end, the Ana-

lytic Center Cutting Plane Method (ACCPM) from optimization is

leveraged to develop an online channel correlation matrix learning

method based on one-bit Signal to Noise Ratio (SNR) feedback.

Consider a MISO link with a multiple antenna base station (BS)

serving a single-antenna user. Time is split in transmission slots. For

each transmission epoch, the BS designs a new transmit beamform-

ing vector and uses it to send the data to its receiver which mea-

sures the average SNR, compares with a pre-determined threshold

and sends a ’1’ or a ’0’ to the BS depending on whether the average

SNR is above or below the threshold, respectively. The beamform-

ing vectors, obtained from a novel optimization-based formulation,
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are designed so that they not only maximize a transmitter-side es-

timate of the average received SNR, but also are diverse enough to

learn the channel correlation matrix accurately as time progresses.

An analytic center based threshold selection algorithm is used in or-

der to cut off a half space and reduce the current feasible region for

the channel correlation matrix significantly at every time slot. Based

on this algorithm, it is shown that in the absence of binary measure-

ment or feedback communication errors, the feasible region of the

channel estimate converges to within a ball of radius r from the true

value within O
(

N2

t

r2

)

iterations (where Nt is the number of trans-

mit antennas) and the average received SNR converges asymptoti-

cally to the maximum achievable SNR value (obtained with perfect

knowledge of the channel correlation matrix). The proposed tech-

nique is then extended to the case where there are bit errors in the

SNR measurement at the receiver or over the feedback link. In this

case a maximum likelihood formulation is proposed to incorporate

the bit flips occurring due to measurement noise or feedback channel

noise. The conditions for identifiability of the maximum likelihood

estimate are also studied in order to prove the convergence of the

algorithm in the presence of errors.

2. SYSTEM MODEL

Consider a transmitter with Nt antennas and a receiver with a sin-

gle antenna. Let the channel from the transmitter to the receiver be

modeled as a Nt × 1 complex random vector h, with zero mean and

correlation matrix Rh = E
(

hh
H
)

. Time is divided into transmis-

sion rounds or slots of length T seconds, with each slot comprising

enough symbols for the receiver to perform relatively accurate power

estimation. At time tT+τ , where t is a slot index and τ is ‘fast time’,

the transmitter sends the complex zero-mean unit-variance symbol

x(tT+τ) times a complex beamforming vector wt, and the receiver

measures

y(tT + τ) =
[

w
H
t h

]

x(tT + τ) + z(tT + τ), (1)

where the additive noise z(·) has zero mean, variance σ2, and is in-

dependent of x(·). The average received signal to noise ratio (SNR)

for slot t is given by E
(

|wH

t
h|2

σ2

)

=
w

H

t
Rhwt

σ2 . If the transmitter has

perfect knowledge of Rh, then the beamforming vector that maxi-

mizes the average received SNR is the principal eigenvector of Rh

scaled by the available transmit power. The transmitter initially has

no channel state information (CSI), and its objective is to learn Rh

and maximize the average received SNR, based on binary SNR feed-

back. More specifically, in each time slot t, the receiver estimates the

average SNR and compares it with a threshold γt. A ’1’ is fed back

to the transmitter if the average SNR is ≥ γt and a ’0’ is fed back

otherwise. It is initially assumed that there is no measurement or

feedback communication error. Based on the single-bit feedback at

time t, the transmitter learns that

{

w
H
t Rhwt ≥ γt, st = 1; or

w
H
t Rhwt < γt, st = 0,

(2)

where st is the 1-bit feedback at time t. For every feedback bit, the

transmitter learns an additional inequality for Rh. Therefore, if wt

and γt are chosen intelligently, the feasible region of Rh can be re-

duced significantly for each time slot and the estimate of the channel

correlation matrix R̂h can approach, as we will show, Rh as time

passes. In particular, we will show how to choose wt and γt to en-

sure that the channel autocorrelation matrix estimate at the transmit-

ter R̂h converges to Rh, and the average received SNR converges

to that attained by the principal eigenvector of Rh.

3. PROBLEM FORMULATION

For every slot t, the transmitter has to choose wt in such a way that

it not only gathers a significant amount of information about Rh

(from the 1-bit feedback), but also tries to deliver a high average

received SNR to enable payload transmission in parallel with chan-

nel learning. To accomplish the former objective, the beamforming

vectors chosen at each instant should be as diverse as possible to

the previously chosen weight vectors so that over a period of time,

the transmitter will learn about Rh from as many different direc-

tions as possible. For the latter, the best that the transmitter can

do to deliver a high average received SNR is to assume that R̂h is

close to Rh and choose the beamforming weight vector along the

direction of the principal eigenvector of R̂h. Since the transmitter

does not have any CSI to start with, initially it has to give preference

towards choosing weight vectors that can explore the channel corre-

lation space efficiently, to improve the accuracy of R̂h; and then, as

time passes, slowly shift its priority towards beamforming vectors in

the direction of the principal eigenvector of R̂h. This ensures that as

R̂h approaches Rh (as will be shown later), wt approaches the di-

rection of principal eigenvector of Rh, thus attaining the maximum

average received SNR achieved with perfect knowledge of Rh.

At the end of slot t, the transmitter has learned the following

inequalities about Rh from the t feedback bits received

wi
H
Rhwi ≥ γi, ∀i ∈ G1 (3)

wi
H
Rhwi < γi, ∀i ∈ G2 (4)

where G1 = {i : 1 ≤ i ≤ t, si = 1}, G2 = {i : 1 ≤ i ≤ t, si = 0},

G1

⋃

G2 = {1, 2, . . . , t} and t is the number of elapsed time slots.

We propose to update R̂h as follows.

Π1 R̂h = argmax
Rh

∑

i∈G1

log (Tr (WiRh)− γi)

+
∑

j∈G2

log (γj − Tr (WiRh)) + log detRh (5)

where Wi = wiw
H
i and the term wi

H
Rhwi has been rewritten as

Tr (WiRh). Π1 is a convex optimization problem which obtains

the analytic center of the feasible region at time slot t formed by the

linear inequalities (3)-(4) and the positive semi-definite cone [5] [6].

It can be solved efficiently using interior point methods with worst

case complexity O(N7
t ).

3.1. Design of beamforming vector wt+1 and threshold γt+1 :

Analytic Center Cutting Plane Method (ACCPM)

Design of beamforming vector wt+1

After updating R̂h, the beamforming vector for time slot t+ 1,

wt+1 is designed as follows.

Π2 wt+1 = arg max
‖w‖=1

w
H
R̂hw − λtw

H
Vw,tV

H
w,tw

where Vw,t = [w1,w2, . . . ,wt], and λt is a decreasing function of

t e.g., λt = λ
⌈0.1t⌉ . The solution of Π2 can be obtained in closed

form i.e., wt+1 is the unit vector along the direction of principal

eigenvector of the matrix (R̂h − λtVw,tV
H
w,t).

The objective function in Π2 consists of two terms, the first one

is proportional to the transmitter side estimate of average received

SNR (which is close to the actual average received SNR if the trans-

mitter has estimated R̂h close to Rh), and the second one is the

squared norm of the vector (VH
w,tw), whose ith entry is the dot-

product of w with wi. Maximization of this objective function gives

7344



a weight vector that strikes a balance between maximizing the esti-

mated average received SNR and minimizing similarity to the weight

vectors chosen in previous time slots. The scalar λt is chosen as a

decreasing function of t with λ ≫ 1, where λ is the value of λt at

t = 1. The rate of decrease of λt w.r.t. t is chosen based on how

quickly the Tx can learn the channel.

In Π2, for small t, since λt ≫ 1, the choice of weight vector is

dictated by
(

w
H
Vw,tV

H
w,tw

)

resulting in diverse weight vectors

that explore different directions, gathering information about Rh

to help the Tx form an accurate estimate of Rh. Then for large t,

λt ≪ 1 and the preference shifts to the first term w
H
R̂hw, result-

ing in weight vectors aligned along the principal eigenvector of R̂h.

Therefore, as R̂h → Rh as t → ∞, the beamforming vector chosen

by the Tx asymptotically aligns itself with the direction of the princi-

pal eigenvector of Rh, thus attaining the maximum average received

SNR.

Design of threshold γt+1

After choosing wt+1, the transmitter selects an appropriate SNR

threshold γt+1 such that the subsequent inequality constraint for Rh

obtained from the 1-bit feedback at time slot t + 1 reduces con-

siderably the feasible region at time t given by Pt, where Pt =
{R : R � 0,wi

H
Rwi ≥ γi, ∀i ∈ G1,wi

H
Rwi < γi, ∀i ∈

G2, G1

⋃

G2 = {1, 2, . . . , t}}. This is crucial for the convergence

of R̂h to Rh. Since the transmitter already communicates pay-

load information to the receiver in parallel to learning to beamform,

the new threshold can ‘piggyback’ on the payload transmission at

limited overhead - unlike the receiver feedback on the reverse link,

which is more severely limited in terms of rate. The basic method

still works without having the transmitter dictate thresholds to the

receiver, albeit convergence to the true channel correlation matrix

cannot be guaranteed in this case.

One way to ensure that the feasible region is reduced at each

time step is to choose wt+1 and γt+1, such that the resulting hy-

perplane wt+1
H
Rwt+1 = γt+1 passes through an interior point of

Pt. Here, we propose to design the beamforming vector wt+1 and

the threshold γt+1 such that the resulting hyperplane passes through

the analytic center of Pt (Analytic Center Cutting Plane Method -

ACCPM) which is R̂h. Since the analytic center is the point that

maximizes the product of distances to the defining hyperplanes and

the positive semi-definite cone, it gives the deepest interior point of

Pt. Hence for a given wt+1, γt+1 is chosen as follows.

γt+1 = wt+1
H
R̂hwt+1 (6)

This ensures that the resultant hyperplane wt+1
H
Rwt+1 = γt+1 ,

where R ∈ CNtxNt will pass through R̂h and cut off a significant

part of the current feasible region Pt.

It has been shown that using ACCPM, the analytic center of the

polyhedron Pt is restricted to a ball of radius r around the true value

within O
(

N2

t

r2

)

iterations [7]. It follows that R̂h (updated as the

analytic center of the current feasible region) is restricted to a ball

of radius r around Rh within O
(

N2

t

r2

)

iterations. Therefore, if λt

is designed so that it becomes negligible by ⌈
N2

t

r2
⌉ iterations (i.e.

λt ≪ 1), then the objective function of Π2 can be approximated as

w
H(R̂h)w. Hence asymptotically, as R̂h → Rh, the beamforming

weight vector will converge to the principal eigenvector of Rh and

the average received SNR will approach the maximum achievable

average SNR (obtained with perfect knowledge of Rh).

4. MAXIMUM LIKELIHOOD FORMULATION

In practice certain bits may be flipped due to inaccurate SNR esti-

mation at the receiver, or communication errors on the reverse link.

Assuming a memoryless feedback link, these errors are independent

from slot to slot. We model both using zero mean Gaussian random

variables with variance σ2
n. With the inclusion of this noise, the in-

equalities derived at the transmitter from the one bit feedback at time

t are as follows.

{

w
H
t Rhwt + nt ≥ γt, st = 1;

w
H
t Rhwt + nt < γt, st = 0.

(7)

where nt ∼ N (0, σ2
n) is the equivalent measurement noise at time

t. The likelihood function of Rh given the received feedback bits

s1, s2, . . . , st is as follows.

f(Rh|st) =
∏

i∈G1

Pr [Tr(WiRh) + nt ≥ γi]

∏

i∈G2

Pr [Tr(WiRh) + nt < γi]

=
∏

i∈G1

Φ

(

Tr(WiRh)− γi

σn

)

∏

i∈G2

Φ

(

γi − Tr(WiRh)

σn

)

(8)

where st = [s1, s2, . . . , st], Φ(x) = 1√
2π

∫ x

−∞ e−
x
2

2 dx is the

standard Gaussian c.d.f. At every time t + 1, R̂h is updated as

the maximum likelihood estimate R̂
MLE

h (as compared to the an-

alytic center in the error-free case) obtained from the convex opti-

mization problem Π3 which maximizes the log-likelihood function

log (f(Rh|st)) with a positive semi-definite constraint.

Π3 R̂
MLE

h = arg max
Rh�0

∑

i∈G1

log Φ

(

Tr(WiRh)− γi

σn

)

+
∑

i∈G2

log Φ

(

γi − Tr(WiRh)

σn

)

(9)

Π3 is a convex optimization problem since it involves the maximiza-

tion of the logarithm of the c.d.f. of a Gaussian distribution which

is concave, with a positive a semi-definite constraint which is con-

vex. Once the channel correlation matrix estimate is updated, wt+1

is chosen as the principal eigenvector of
(

R̂
MLE

h − λtVw,tV
H
w,t

)

and γt+1 = Tr (Wt+1R̂
MLE

h ), where Vw,t = [w1,w2, . . . ,wt]
and λt is a decreasing function of t. If the the autocorrelation ma-

trix is statistically identifiable from the measurements, then the MLE

will asymptotically approach the true value as the number of feed-

back bits increases. In this case, the average received SNR will

approach the maximum SNR that can be achieved at the user side

(obtained with perfect CSI). Now st can be written as follows

st = sign [Tr(WtRh) + ct] = sign
[

vec (Wt)
H

vec (Rh) + ct

]

where ct = nt − γt. For identifiability, it is required that

limS→∞
1

S

∑S

t=1
vec (Wt) vec (Wt)

H
exists and is non-singular

[8]. This in turn requires the weight vectors to be diverse so that the

log-likelihood function has a unique maximum in the limit. In our

case, if we choose a high value of λ and design the decay rate of λt

appropriately, it is possible to satisfy this condition.
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5. SIMULATION RESULTS

The average received SNR and the estimation error ‖Rh − R̂h‖F
using the ACCPM for threshold update and beamforming vector de-

sign are plotted in Figures 1 and 2 for Nt = 5 and Nt = 10 respec-

tively. For simulation purposes, the channel vector h is drawn from

CN (0,Rh). It can be seen that, the average received SNR (solid

line) converges to the maximum achievable average SNR value with

perfect knowledge of Rh at the transmitter (dotted line), as time in-

creases. It takes approximately 80 time slots for the algorithm to

converge to the maximum achievable SNR for Nt = 5 which means

that approximately 6 (80/(5(5+1)/2)) feedback bits are required to

reconstruct a complex entry of Rh accurately. The time taken by the

algorithm to converge to the maximum achievable SNR increases

with the number of transmit antennas. The average received SNR

and the Rh estimation error using the MLE algorithm is plotted in

Figure 3 for Nt = 5 and σn = 0.01. There were 48 bit flips due to

measurement and feedback noise in this case. It can be seen that R̂h

approaches Rh and the average received SNR approaches the maxi-

mum achievable SNR with perfect knowledge of Rh. However, the

time taken for convergence is higher than in the case without errors

(Figure 1), i.e., 150 with errors versus 80 without errors. The rea-

son for the slower convergence rate is that the maximum likelihood

estimate is not necessarily the deepest interior point of Pt, the feasi-

ble region in the absence of noise, which results in a slower rate of

decrease of the feasible region as compared to ACCPM.

6. CONCLUSIONS

In this paper, we have proposed an efficient way to accurately es-

timate the channel correlation matrix at the transmitter of a MISO

link based only on one bit feedback from the receiver, obtained by

comparing its average received SNR with a threshold that is varied

adaptively by the transmitter and communicated to the receiver. This

algorithm is used for designing transmit beamforming vectors. The

proposed technique is shown to be promising because the transmitter

starts with no CSI, and, as time progresses, not only does it obtain an

accurate estimate of the correlation matrix and the maximum-SNR

beamformer, but it does so while transmitting payload in parallel

with the learning process. A maximum likelihood formulation was

also proposed to accommodate measurement/feedback communica-

tion errors and the identifiability conditions required for the asymp-

totic convergence of the ML estimate were discussed. Pertinent ex-

tensions to cognitive radio settings are currently under investigation,

and will be reported in the journal version.

After acceptance of this paper, it has been brought to our atten-

tion that a very similar idea appears in a parallel submission by Xu

and Zhang [9] that will be presented at the same conference. While

the application focus of [9] is on transmit beamforming for wireless

energy transfer, and several design choices are naturally different,

these being independent pieces of work, the core idea is the same in

both papers.
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