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ABSTRACT

Spectrum sensing is a fundamental problem in cognitive ra-
dio. In this paper, we introduce two spectrum sensing meth-
ods based on Gerschgorin disk. The Gerschgorin radii contain
the information of signal subspace, whereas the Gerschgorin
centers capture the signal energy. The first proposal only re-
lies on the Gerschgorin radii and thereby is robust against
nonuniform noise. The second one, utilizing both the Ger-
schgorin radii and centers, can significantly improve the de-
tection performance. Simulation results are included to illus-
trate the superiority of the proposed methods.

Index Terms— Spectrum sensing, cognitive radio, Ger-
schgorin disk

1. INTRODUCTION

Recently, the increasing usage of wireless communication de-
vices as well as urgent demand for high data transformation
rates have intensified the scarcity of radio spectrum. Cogni-
tive radio (CR) [1] is one of the most promising methods to
alleviate this problem. In the CR networks, secondary (unli-
censed) users (SUs) opportunistically occupy the vacant spec-
trum authorized to primary (licensed) users (PUs), and vacate
the spectrum immediately when the PUs are active again. To
this end, the SUs are required to frequently and reliably sense
the spectrum, thus achieving high opportunistic throughput
capacity while causing little interference to the PUs [2]. As
a result, spectrum sensing becomes an important issue in the
CR networks.

Numerous spectrum sensing methods have been pro-
posed for CR, such as energy detection (ED) [3],[4], coherent
detection (matched filtering) [5],[6],[7], feature detection
(cyclostationary detection) [8],[9], and other novel meth-
ods based on the volumn of the sample covariance matrix
(SCM) [10]. Given the noise variance, the energy detector
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is proved to be optimal for independent and identically dis-
tributed (IID) noise [6]. However, its detection performance
considerably degrades in practice due to the uncertainty in
the estimated noise variance. The coherent detection and
feature detection schemes usually suffer from synchroniza-
tion errors and frequency offsets. Thus, the methods men-
tioned above may not be attractive in practical CR systems.
In contrast, the eigenvalue-based detectors [11]-[14] have
drawn considerable attention. For instance, the arithmetic-
to-geometric mean (AGM) detector [13] and the ratio of
maximum-minimum (MME) eigenvalue detector [14] need
no a priori information about the observed data. Howev-
er, they suffer from performance degradation for the case
of nonuniform noise, which results from the uncalibrated
receivers. To handle the spectrum sensing issue in nonuni-
form noise, we propose two novel spectrum sensing methods
based on Gerschgorin disk [15], [16]. The first method only
utilizes the Gerschgorin radii for spectrum sensing, thereby it
is robust against the nonuniform noise. The second approach
employs the information of both Gerschgorin radii and cen-
ters. Thus, this approach is able to outperform the former
under the uniform-noise scenario.

The following notations are used throughout the paper.
Superscripts T, H, and * denote transpose, conjugate trans-
pose and conjugate, respectively. E[·] and |·| stand for mathe-
matical expectation and absolute value, respectively.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider a CR network where a multi-antenna SU tries to
detect the signal of a PU. The observation at time n (n =
1, · · · , N ) under binary hypotheses (H0: the signal-absence
hypothesis; H1: the signal-presence hypothesis) can be ex-
pressed as

H0 : x(n) = w(n) (1)
H1 : x(n) = hs(n) +w(n) (2)

Here, x(n) = [x1(n), · · · , xM (n)]
T denotes the complex

received observation vector, xi(n) (i = 1, · · · ,M ) is the

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7328



output of the ith antenna, M is the number of antennas of
the SU, and h ∈ CM×1 denotes the vector of channel co-
efficients between the PU and SU. The channel is assumed
to be flat fading and remains fixed during the sensing inter-
val. Moreover, s(n) is the primary signal, which is assumed
to be zero-mean circularly symmetric Gaussian distributed,
w(n) = [w1(n), · · · , wM (n)]

T denotes the zero-mean addi-
tive white Gaussian noise (AWGN) vector. Without loss of
generality, s(n) and w(n) are assumed to be independent of
each other.

2.2. Gerschgorin Disk

The covariance matrix of the observed data x(n) is R =
E
[
x(n)x(n)H

]
, which can be partitioned as

R =

 r11 · · · r1,M
...

. . .
...

rM,1 · · · rM,M

 =

[
R1 r
rH rM,M

]
(3)

where R1 is an (M − 1)× (M − 1) leading principal subma-
trix obtained by deleting the last row and column of R. The
vector r = [r1,M , · · · , rM−1,M ]

T is obtained from the last
column of the matrix R without its last element. Calculating
the eigendecomposition of R1 gives

R1 = V ΣV H (4)

where Σ = diag(λ1, · · · , λM−1) is the diagonal matrix com-
posed by the eigenvalues of R1 in descending order, and V
is an (M − 1)× (M − 1) unitary matrix formed by the eigen-
vectors of R1, i.e.,

V = [v1, · · · ,vM−1] . (5)

In the sequel, a new M×M unitary transformation matrix
U is formed as

U =

[
V 0
0T 1

]
. (6)

Accordingly, the transformed covariance matrix can be calcu-
lated as

G = UHRU =

[
V HR1V V Hr
rHV rMM

]
(7)

=


λ1 · · · 0 τ1
...

. . .
...

...
0 · · · λM−1 τM−1

τ∗1 · · · τ∗M−1 rMM

 (8)

where
τi = vH

i r, i = 1, · · · ,M − 1. (9)

Note that the (M −1)× (M −1) leading principle submatrix
of G is exactly the eigenvalue matrix Σ. The ith eigenvalue

of R1, i.e., λi, is known as the ith Gerschgorin center of G.
The corresponding Gerschorin radius of G is calculated as

ρi = |τi| =
∣∣vH

i r
∣∣ , i = 1, · · · ,M − 1. (10)

The ith disk is then defined as the collection of points in the
complex plane whose distance to λi is less than or equal to ρi.

Under hypothesis H1, r can be expressed as

r = h1σ
2
sh

∗
M , (11)

where h1 is the vector composed of the first (M − 1) ele-
ments of h, hM is the last element of h, and σ2

s = E[|s(t)|2]
denotes the power of primary signal. Equation (11) indicates
that the existence of primary signal makes r lie in the signal
subspace. Under H1, the eigenvector v1 lies in the signal sub-
space, whereas the other eigenvectors v2, · · · ,vM−1 lie in
the noise subspace. Meanwhile, ρi (i = 1, · · · ,M − 1) can
be interpreted as the magnitude of projection of r onto the
ith eigenvector vi. We denote ρ1 as the signal Gerschgorin
radii and ρi, i = 2, · · · ,M − 1, as the noise Gerschgorin
radii, respectively. Note that the Gerschgorin disks have been
employed in [15] for source number detection. Later on, a
variant of Gerschgorin disk has been used in [16] for low-
complexity source enumeration.

3. GERSCHGORIN DISK-BASED DETECTORS

3.1. Gerschgorin Radius-based Detection

Practically, only the SCM is available, which is calculated as

R̂ =
1

N

N∑
n=1

x(n)x(n)H . (12)

In order to use the information of Gerschgorin disks, we par-
tition R̂ as (3) and get the estimated submatrix R̂1 and vec-
tor r̂. The eigendecomposition of R̂1 is performed to obtain
the eigenvalues λ̂1, · · · , λ̂M−1, and corresponding eigenvec-
tors v̂1, · · · , v̂M−1. Thus, the Gerschgorin radii of the trans-
formed SCM are expressed as

ρ̂i =
∣∣∣v̂H

i r̂
∣∣∣ , i = 1, · · · ,M − 1. (13)

As we only consider the scenario of single PU, in which
ρ̂1 is much larger than ρ̂i (i = 2, · · · ,M − 1) under H1, it is
reasonable to take the first Gerschgorin radius (GR) ρ̂1 as the
test statistic, i.e.,

ξGR , ρ̂1 =
∣∣∣v̂H

1 r̂
∣∣∣ . (14)

We denote this spectrum sensing method as GR method, since
it is based on the Gerschgorin radius. According to (12), r̂ is
expressed as r̂ = 1

N

∑N
n=1 x1(n)x

∗
M (n), where x1(n) is ob-

tained by deleting the last element of x(n). Under the signal-
absence hypothesis H0, r̂ asymptotically approaches to a ze-
ro vector due to the independence between noises. Moreover,
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v̂1 is the noise eigenvector, which is uncorrelated with r̂, thus
making ρ̂1 to be approximately equivalent to zero. Under hy-
pothesis H1, however, v̂1 lies in the signal subspace, which is
spanned by the channel vector h1. It is implied in (11) that r̂
lies close to the signal subspace. Consequently, the projection
of r̂ onto v̂1 under H1 is much larger than that of under H0.

Because no information for noise variance is needed, the
GR detector can achieve the constant false alarm rate prop-
erty. Moreover, as the Gerschgorin radii are independent of
the noise variance, the proposed GR approach is also robust
against the nonuniform noise due to the uncalibrated receiver.
The proposed GR method for spectrum sensing is summa-
rized in Table 1.

Table 1: GR algorithm for spectrum sensing

Step 1: Calculate the SCM using (12).

Step 2: Partition R̂ as R̂ =

[
R̂1 r̂

r̂H r̂MM

]
.

Step 3: Perform the eigendecomposition of R̂1: R̂1 =

V̂ Σ̂V̂
H

, and then get the eigenvector matrix of R̂1

as V̂ = [v̂1, · · · , v̂M−1].

Step 4: Calculate the GR test statistic as ξGR = |v̂H
1 r̂|.

Step 5: Decide the presence of primary signal or not using

ξGR

H1

≷
H0

γGR,

where γGR is the predetermined threshold.

3.2. Gerschgorin Disk-based Detection

The Gerschgorin centers give us information about the prima-
ry signal energy. Fig. 1 shows the Gerschgorin disks generat-
ed by the transformed SCM Ĝ under H1, where the number
of antennas and snapshots are set as M = 6 and N = 100.
The largest disk is the source Gerschgorin disk and the small-
er four are the noise Gerschgorin disk collection. Fig. 1 ex-
plicitly shows that the source Gerschgorin disk has a much
larger center (also the signal eigenvalue λ̂1) than those of
the noise Gerschgorin disk collection (also the noise eigen-
values). The eigenvalue dispersion under hypothesis H1 can
be exploited for spectrum sensing.

The authors in [13] have developed an eigenvalue-based
detector under the generalized likelihood ratio test (GLRT)
framework, resulting in the AGM detector. The AGM method
is available to detect single PU without the a priori knowledge
of PU and with robustness against noise uncertainty. In order
to utilize both the Gerschgorin centers (i.e., the eigenvalues)
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Fig. 1: Gerschgorin disks of matrix Ĝ, M = 6, N = 100

and the radii to detect signals, a Gerschgorin disk-based (GD)
method is given as

ξGD ,
1

M−1

∑M−1
i=1 λ̂i

(
∏M−1

i=1 λ̂i)
1

M−1

× ρ̂1. (15)

The proposed GD detector employs the information of
subspace projection and signal energy, thus achieving better
detection performance than the AGM and GR methods, as
will be illustrated in Section 4. The proposed GD method for
spectrum sensing is summarized in Table 2.

Table 2: GD algorithm for spectrum sensing

Step 1: Calculate the SCM using (12).

Step 2: Partition R̂ as: R̂ =

[
R̂1 r̂

r̂H r̂MM

]
.

Step 3: Perform the eigendecomposition of R̂1: R̂1 =

V̂ Σ̂V̂
H

, where Σ̂ = [λ̂1, · · · , λ̂M−1] and V̂ =
[v̂1, · · · , v̂M−1] are the eigenvalue matrix and
eigenvector matrix of R̂1, respectively.

Step 4: Calculate the GD test statistic as (15).

Step 5: Decide the presence of primary signal or not ac-
cording to

ξGD

H1

≷
H0

γGD,

where γGD is the predetermined threshold.

4. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed detectors. Our proposals are
compared with several representative methods, that is, the
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AGM, MME, and ED methods. All the results are calculat-
ed based on 200,000 independent Monte-Carlo trials. In the
simulation, the channel coefficients are randomly generated
from zero-mean complex Gaussian variables, and the signal
and noise are generated according to (1) and (2).
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(b) Nonuniform noise

Fig. 2: Probability of detection versus SNR for different noise
types. Pfa = 10−3,M = 6, N = 10

Fig. 2 shows the probability of detection versus SNR
for both uniform and nonuniform noises, where M = 6,
N = 10 and Pfa = 10−3. The SNR is defined as the
ratio of the signal power to the averaged noise power σ2

w,
i.e., SNR = 10 log (σ2

s/σ
2
w). Fig. 2(a) depicts the uniform

noise case where noise variance σ2
w = 1 for all the anten-

nas. The proposed GR method is superior to AGM and
MME methods, because the gap between the test statis-
tics of the former one under H1 and H0 is much larger
than those of the latters. The GD method outperforms the
GR method since it uses more information from the Ger-
schgorin centers than the latter. Fig. 2(b) illustrates the
detection performance under the nonuniform noise case,
where noise variance from different antennas are set as
[3.0200, 0.3162, 4.3652, 0.2291, 2.2387, 0.5370]. The GR
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Fig. 3: ROC for different noise types. SNR=−3dB, M =
6, N = 10

method has better detection performance than the others, in-
dicating that it is robust against the nonuniform noise. The
performance of the GD method degrades rationally, since
it utilizes the Gerschgorin centers which contain the noise
variance.

The corresponding receiver operating characteristic (ROC)
curves are shown in Fig. 3 for fixed SNR=−3dB. It is seen
that the GR method is optimal for low SNR and relatively s-
mall Pfa in the case of nonuniform noise, which is practically
attractive.

5. CONCLUSION

Two spectrum sensing methods based on the Gerschgorin
disks have been proposed. The GR method has good perfor-
mance especially when there is non-uniform noise, while the
GD method is optimal provided that there is uniform noise.
Due to space limitations, we did not include derivation of the
theoretic thresholds and theoretic performance analyses of
the two approaches, which will be our future works.
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