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ABSTRACT

This paper studies the effect of mobility on the sensing performance

of a cognitive radio network with mobile nodes. The secondary

nodes sense the spectrum using a distributed compressive sensing

approach to detect the available channels. Distributed compressive

sensing is suggested to reduce the number of samples by exploit-

ing correlation between the samples. Channel occupancy at the two

nodes will be jointly estimated and a channel available at the location

of both nodes is chosen for communication. We show that mobility

can be exploited to further decrease the number of samples by in-

creasing the average level of correlation among the sensed samples

over time.

1. INTRODUCTION

In [1], we proposed the novel method of wide-band compressive es-

timation for spectrum sensing to address the problem of channel oc-

cupancy detection using the sparsity of the channel utilization. As a

cognitive radio is interested only in detecting the channel occupancy,

this approach estimates the energy of each channel without the need

for reconstructing the whole spectrum of the received signal. This

method achieves advantages both in complexity and sampling re-

quirements compared to similar approaches such as [2, 3].

The approach proposed in [1] uses compressive sensing and re-

quires that all nodes separately sample the spectrum and detect the

available channels at their respective locations. Such channel occu-

pancy patterns are then used to find a channel available at the lo-

cation of all nodes. While this approach benefits from the sparsity

of the channel occupancy to reduce the sampling requirements, it

does not address the correlation between the samples acquired by the

communicating nodes. Such a correlation can indeed help to further

reduce the required number of samples per node, leading to a gain

in number of samples. The sensing gain is defined as the amount by

which the number of required samples for successful estimation is

reduced. In this paper, we first propose a joint channel occupancy re-

construction approach to decrease the number of samples each node

needs to acquire for successful estimation. Then we show that mo-

bility increases the sensing gain by increasing the probability of high

correlation between the nodes’ samples.

In distributed compressive sensing, spatial correlation between

samples taken by nearby sensors is used to reduce the number of

samples required to reconstruct the signal [4, 5], [6]. In a mobile

wireless network, the sensing and detecting procedures need to be

repeated periodically to address the fact that mobility will change

the topology of the network. While this might suggest that mobility

degrades the performance of the estimation, properly exploiting mo-

bility has been shown to improve the performance of wireless sensor

networks [7, 8]. It has been shown that for a network with growing

number of nodes in a limited area and in the presence of interference,

mobility can enhance the aggregate capacity of a mobile ad-hoc net-

work.

In [9], we studied the effect of mobility on the average number

of opportunities a mobile sensor node will have in a limited time, to

communicate with one of several mobile sink nodes in its vicinity.

We proved that higher mobility of sensor nodes leads to higher op-

portunities for sensors to get in the coverage of a sink node. Using a

similar approach toward node mobility, we herein show that mobil-

ity also benefits the proposed distributed compressive sensing based

algorithm by allowing higher average correlation between the sensed

signals, thereby leading to a smaller number of needed samples.

2. PROBLEM SETUP

Consider a cognitive radio scenario, where n primary users are com-

municating over some of the N available channels in a network.

Some secondary nodes are also trying to use the spectrum assigned

to the primary users opportunistically to exchange information. As-

sume that two secondary nodes decide to communicate over one of

the available channels. The two secondary nodes sense the environ-

ment periodically, at time instants {ti = i∆t}M
i=1 to find available

channels for communication over the T = M∆ seconds of the net-

work activity. Assume that at each of these instants, a primary node

is using its dedicated channel with probability p ≪ 1. Also assume
that the average number of occupied channels at each time instant,

S , np ≪ N meaning that the channel occupancy is sparse.

The two secondary nodes, which intend to share information,

sense the spectrum in a collaborative manner to exploit the correla-

tion between the channel occupancy patterns at the location of the

nodes. Denoting the vector of samples taken by a secondary node

by y and the vector of energies in each of the N channels of the

spectrum at the location of that node by e, we can write

y = Φe (1)

where Φ is the sampling matrix defined by the transfer functions

of the filters embedded in the secondary nodes [1]. Assuming that

the channel is mostly unused (i.e. e is sparse), a compressive sens-

ing reconstruction algorithm (such as the ℓ1 norm minimization) can

reconstruct e from y.

Now assume that two secondary nodes intend to communicate

and therefore need to estimate the channel occupancies at their lo-

cations. Using a narrow-band control channel, the two SUs decide

on one node to do the joint estimation and the other node shares

its sensing with the estimator node. When the two nodes sense the

spectrum, the occupied channels they detect can come from two cat-
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egories of primary nodes. First, the primary nodes in the interference

range of both nodes will introduce correlated energy levels in both

nodes in channels they occupy (common component). Second cate-

gory are primary nodes that lie in the interference range of one of the

two secondary nodes (innovation). Denoting the vector of channel

energies at the location of the two secondary nodes by e1 and e2,

using the joint sparsity model 1 (JSM-1) [4] we can write

y1 = Φe1 e1 = w + z1

y2 = Φe2 e2 = w + z2 (2)

‖w‖0 = L , ‖z1‖0 = L1 , ‖z2‖0 = L2

Here, the length-N and L-sparse energy vector w represents the

common component of e1 and e2 related to the L nodes that oc-

cupy the channels at the location of both nodes. The vectors z1 and

z2 stand for the L1 and L2 nodes that occupy the channels only at

node 1 and only at node 2, respectively.

Using this model, the estimator node solves a linear program-

ming optimization problem to simultaneously reconstruct e1 and e2

using C(L + L1 + L2) samples where C is the coherence coef-

ficient representing the correlation between the sensing matrix and

the sparsity basis. This is done through choosing

eT =





w

z1

z2



 yT =

[

y1

y2

]

ΦT =

[

Φ Φ 0
Φ 0 Φ

]

. (3)

and solving

eT = argmin
eT

‖eT‖1

Subject to yT = ΦTeT . (4)

The channel occupancy vectors will then be used to choose an empty

channel for communication between the secondary nodes. The vec-

tor eT has a maximum of L + L1 + L2 non-zero components and

therefore, a total of C(L + L1 + L2) samples are sufficient to re-
construct eT . If node 1 and node 2 decide to reconstruct the channel

energy vectors e1 and e2 separately, they would needC(L+L1) and
C(L+ L2) samples, respectively. This shows that if the two nodes
share their sample vectors (y1 and y2) and reconstruct the channel

energies jointly, each node can take fewer samples compared to the

separate reconstruction case. The total sensing gain (amount of de-

crease in required number of samples) is therefore CL.

3. EFFECT OF MOBILITY ON THE PERFORMANCE OF

THE PROPOSEDMETHOD

DefineL(ti) to be the number of channels detected to be occupied in
both nodes at time ti due to the presence of primary nodes interfering
with both secondary nodes.

The two secondary nodes use joint channel occupancy recon-

struction with linear programming as discussed in Section 2. They

fix the number of samples each node takes based on a nominal prior

for the value of L named LP to achieve a desirable probability of

detection PD . In other words, the nodes not only assume that the

channel occupancy is sparse, but they also consider a level of corre-

lation between their samples and adjust their sampling requirements

based on this assumption. Using the results of Section 2, each node

acquires K1 = K2 = 1

2
C(LP + L1 + L2) samples based on the

nominal LP and an average of L1 = L2 = S − LP for the sparsity

level of the innovation signals (number of primary nodes interfering

with one of the secondary nodes only). However, the instantaneous

values of L, L1 and L2 are random due to the random mobility of

the nodes.

The success of the joint channel occupancy reconstruction at

each time instant ti will therefore depend on the actual L(ti). If

the level of correlation between the sensed signals is higher than the

prior assumption, L(ti) > LP, the reconstruction will be successful

with a probability at least equal to the desired PD because the num-

ber of samples taken is higher than the number of required samples.

If L(ti) < LP, the detection has a failure probability higher than

1−PD at t = ti and the communication might cause interference to
the primary network at the interval [ti ti+1]. Based on the scenario
and configurations of the problem (number of nodes, interference

threshold, the mobility of the network), a proper LP can be obtained

that minimizes the required number of samples while keeping the

probability of detection at the desired level.

The effect of mobility is therefore studied by investigating how

mobility of the nodes changes the average value of the parameter

L(ti). If mobility is shown to increase L(ti) on average and over

the course of the communication (over the M time instants {ti =
i∆t}M

i=1), it can either increase the probability of successful detec-

tion for a fixed LP, or reduce the LP needed to achieve a certain

PD. We assume that the secondary nodes are mobile in a square

grid of total area AT . The n primary nodes are assumed to have a

uniform distribution of the same grid. We further adopt a two di-

mensional Wiener mobility model for the secondary nodes similar

to the one adopted and analyzed in [9]. Using Wiener process (or

Levy process in general) and random walk is a common practise for

modelling mobility in wireless networks for several reasons includ-

ing tractability, level of uncertainty in direction of the nodes’ motion

and independent increment property [10–13].

In this model, each of the x and y coordinates of a secondary

node will be formulated by an independent Wiener random process

given by

Xi(t) = Xi(0) + σVi,1(t) (5)

Yi(t) = Yi(0) + σVi,2(t), i = 1, 2. (6)

Here {Xi(0)}i=1,2 and {yi(0)}i=1,2 are the random variables of the

coordinates of the two secondary nodes at t = 0, whereas σ is the

common mobility parameter of the secondary nodes. The parameter

σ controls the level of mobility each node possesses. Smaller values

of σ correspond to lower levels of mobility and larger values of σ
represent nodes that are more mobile. The random processes Vi,1(t)
and Vi,2(t) are statistically independent standard Wiener processes

defined as Vi(t) ∼ N (0, t), Vi(0) = 0, i = 1, 2. Here, ∼ is used

to show the distribution of a random variable and N (a, b) refers to
a normal distribution with mean a and variance b.

Analysis

In the following analysis, we first show that the average number

of primary nodes creating correlated samples in the two secondary

nodes decreases with the distance of the two secondary nodes. As-

suming that the primary nodes are using a constant transmit power,

the interference threshold can be translated into a frequency reuse

distance. A secondary node will interfere with the primary node if

their distance is smaller thanD.

Lemma 3.1 For d ∈ [0, 2D],

E{L(ti)} = pλ

(

2D2 arccos
d

2D
− dD

√

1− (
d

2D
)2

)

(7)
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Fig. 1. A simple method to bound Pr{d(ti) < d}. Here a = d, and
b = d/

√
2

where λ is the density of the number of primary nodes per unit sur-
face.

Proof At any time ti the average number of active nodes within a
region with area A can be expressed as N(A) = pλA. The average
value of the parameter L(ti) for two secondary nodes with distance
d is therefore equal toN(AC(d)) where AC(d) is the region shared
between two circles of radius D and center distance d. It is easy to
see that

AC(d) = 2D2 arccos
d

2D
− dD

√

1− (
d

2D
)2 for d ∈ [0, 2D].

Corollary 3.2 Expected value of L(ti) is a decreasing function of
the distance between the two nodes, d.

Proof The derivative of L(ti) with respect to the nodes’ distance d
is

−pλ





D − d/2
√

1− ( d

2D
)2

+D

√

1− (
d

2D
)2



 (8)

which is clearly negative for 0 < d < 2D.

Denote by I(ti) the indicator random variable for the event L(ti) >
LP, or equivalently, I(ti) = 1 if L(ti) > LP and 0 otherwise. The
random sequence I(ti) is therefore an indicator of a successful de-
tection with probability PD . If L(ti) > LP, the number of samples

that the two secondary nodes acquire will be sufficient for a success-

ful reconstruction of the energy vectors with probability PD . Let us

define

Ns =
M
∑

i=1

I(ti) (9)

to be the random variable of the total number of time instants in

which the L(ti) > LP, or equivalently, the number of time instants

at which the nodes have successfully reconstructed the channel occu-

pancy with the desired PD . In the following theorem, we prove that

the higher the mobility of the nodes, the larger the average of Ns.

In other words, mobility can contribute to the performance of our

distributed compressive estimation algorithm by providing a larger

correlation among the signals sensed by the mobile sensors. Such

increase can be used in two fashions. If the same value for LP is

adopted, the increase results in a higher reliability communication

within the secondary nodes. However, if the current success rate in

communication is acceptable, a more mobile network can adopt a

larger LP and therefore take fewer samples per node.

Theorem 3.3 The probability Pr{L(ti) > LP} and therefore the
average number of successful detections inM time instants,E{Ns},
are increasing functions of σ, the mobility parameter of the network.

Proof We first define dP to be the distance between the two sec-

ondary nodes corresponding to L = LP primary nodes interfering

with both sensor nodes. In other words, assume that N(AC(dP)) =
LP. This means that, when the distance between the two nodes is

dP, the average number of channels occupied at the two nodes due

to primary nodes interfering both secondary nodes is LP. It is now

easy to see that

Pr{L(ti) > LP} ≡ Pr{N(AC(d(ti))) > N(AC(dP))}
≡ Pr{AC(d(ti)) > AC(dP)} (10)

≡ Pr{d(ti) < dP} (11)

where we have replaced d with d(ti) to explicitly denote the time

dependence of the distance between the two nodes. The equivalence

in (10) is a result of N(A) being an increasing function of A and

the second equivalence, (11) is a result of AC(d) being a decreasing
function of d. Assuming that the two nodes are mobile based on the
Wiener process introduced in (5) and (6), we can write

Pr{d(ti) < dP} = Pr{[X1(ti)−X2(ti)]
2

+[Y1(ti)− Y2(ti)]
2 < d2

P}. (12)

Figure 1 suggests a very simple approach to boundingPr{d(ti) <
dP}. Based on this diagram, we can see that Pr{A} < Pr{d(ti) <
dP} < Pr{B} where the events A and B are defined as

A ={∆X(ti) < dP/
√
2} and {∆Y (ti) < dP/

√
2}

B ={∆X(ti) < dP} and {∆Y (ti) < dP}.

Here∆X(ti) = |X1(ti)−X2(ti)| and∆Y (ti) = |Y1(ti)−Y2(ti)|.
Using the assumption that the random processes representing the x
and y coordinates of the nodes are independent, we can conclude

that the lower bound and the upper bound of Pr{d(ti) < dP} can be
respectively written as

Pr{A} = Pr{dX(ti) <
dP√
2
}Pr{dY (ti) <

dP√
2
}

Pr{B} = Pr{dX(ti) < dP}Pr{dY (ti) < dP}.

In other words, the events whose probabilities establish a lower

bound and an upper bound for Pr{d(ti) < dP} are cross sections

of two independent events and therefore the bounding probabilities

can be written as the multiplication of the probabilities of the under-

lying independent events. Each of the two events appearing in the

lower bound and the upper bound of Pr{d(ti) < dP} corresponds
to the event that the distance between two one-dimensional Wiener

processes does not exceed a fixed value (dP or dP/
√
2). In [14],

we have proven that the probability of such events are increasing

functions of the mobility parameters of the network nodes, if within

the observation time T , the secondary nodes do not leave the area

covered by the primary nodes. This implies that both the lower

bound and the upper bound of Pr{d(ti) < dP} are increasing func-
tions of the mobility parameter. Therefore Pr{d(ti) < dP} and its
equivalent Pr{L(ti) > LP} are increasing functions of the mobility
parameter.
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Fig. 2. Separate reconstruction vs. joint reconstruction
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Fig. 3. Effect of mobility on the probability of successful reconstruc-

tion

4. SIMULATIONS

Figure 2 illustrates the result of a numeric simulation to determine

the number of required samples to successfully detect the vector of

channel energies in three different scenarios:

1. Separate reconstruction

2. Joint reconstruction, L = 2, L1 = L2 = 4

3. Joint reconstruction, L = 4, L1 = L2 = 2

Each node senses the spectrum and reconstruct the energy vector

separately (in scenario 1) or jointly (in scenarios 2,3) with different

number of samples (5 − 15 samples). As seen in Fig. 2, with 12

samples and using separate reconstruction, each node can detect the

channel occupancy with the probability of 0.9. In scenario 2, joint

reconstruction method discussed in Section 2 is used to retrieve the

channel energy vectors e1 and e2. As seen in Fig. 2, if each of the

nodes takes 10 samples, this approach can reconstruct the channel

occupancy with probability more than 90%. Fig. 2 suggests the re-

quired samples per node in scenario 3 is just 8. To address the effect

of mobility, we have considered a scenario where in a 50x50 grid, 20

primary nodes and two secondary nodes are moving randomly based

on a Gaussian random walk model with step size σ. A channel is

0 1 2 3 4 5 6 7 8
8.5

9

9.5

10

10.5

11

11.5

12

12.5

number of samples

σ

Simulation
Analysis

Fig. 4. Required number of samples per node to achieve PD=90%

vs. mobility parameter, σ obtained by simulation and predicted by

analysis (details of analysis not included in this paper)

occupied within D = 10 meters of the primary users communicat-
ing on that channel. A total of 20 channels are available for nodes

to communicate and the probability of any primary node using its

assigned channel is p = 6/20. The two nodes intending to com-

municate sense the spectrum every ∆t = 5 seconds. At each time
instant, the two secondary nodes use 5 to 15 samples per node to

jointly reconstruct the channel occupancy pattern based on the ap-

proach discussed in Sections 3 and 2. The network is simulated over

100 seconds and repeated several times to average the random mo-

tion of the nodes. The whole process is repeated with nodes having

three different step sizes, σ = 2, 4, 6. As seen in Figure 3, the more
mobile the nodes are, the higher the correlation between the sensed

signals will be and therefore, even fewer number of samples can be

used to successfully reconstruct the channel energy vectors. The gain

observed in Fig. 3 is due to the fact that in a network with a larger

mobility, the communicating nodes will have a higher probability of

being in a closer distance of each other over the fixed time instants

ti, i = 2, 3, . . . ,M leading to a larger average of L(ti) and result-
ing in a higher probability for the success of the joint reconstruction

algorithm using smaller number of samples. In Fig. 4 the results

of the mobile node simulation has been used to plot the number of

samples required to achieve PD=90% versus the mobility parameter

of the network nodes. The σ = 0 case corresponds to separate de-
tection (not addressing correlation) that also appears in Fig. 3. As

seen in Fig. 4, when the nodes in a network become more mobile,

they can take fewer samples and still reconstruct the phenomenon of

interest with the same success probability using the proposed joint

reconstruction scheme.

5. CONCLUSION

A distributed compressive sensing based approach has been pro-

posed for spectrum sensing in a mobile ad-hoc cognitive radio net-

work. Exploiting the correlation between samples of close-by nodes,

the proposed method jointly reconstructs the spectrum occupancy at

the location of secondary nodes with fewer number of samples. Fur-

thermore, the effect of the mobility of the nodes has been studied

using a Wiener process model. It has been proven that by mobility

can be exploited to further reduce the number of samples, thereby

introducing a sensing gain.
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