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ABSTRACT

Herein, we consider the problem of detecting primary users’ signals
in the presence of noise correlation, which may arise due to imper-
fections in filtering and oversampling operations in a Cognitive Ra-
dio (CR) receiver. In this context, we study a Maximum Eigenvalue
(ME) detection technique using recent results from Random Matrix
Theory (RMT) for characterizing the distribution of the maximum
eigenvalue of a class of sample covariance matrices. Subsequently,
we derive a theoretical expression for a sensing threshold as a func-
tion of the probability of false alarm and evaluate the sensing perfor-
mance in terms of probability of correct decision. It is shown that the
proposed approach significantly improves the sensing performance
of the ME detector in correlated noise scenarios.

Index Terms— Spectrum Sensing, Noise Correlation, Cogni-
tive Radio, Random Matrix theory

1. INTRODUCTION

Cognitive Radio (CR) communications is considered a promising so-
lution in order to address the spectrum scarcity problem caused by
the remarkable growth of wireless broadband devices and services
competing for the limited usable spectrum [1, 2]. One of the key
functions of a CR is to adjust its system parameters based on the
spectral usage knowledge of its surrounding environment so that the
normal operation of licensed primary systems is not affected. For
this purpose, Spectrum Sensing (SS) is an important mechanism re-
quired by a CR in order to detect spectral holes in different dimen-
sions such as frequency, space, area, polarization and angular do-
mains [3, 4, 5]. In this context, several SS techniques such as Energy
Detection (ED), matched filter based detection, cyclostationary fea-
ture based detection, covariance based detection, eigenvalue based
detection have been proposed in the literature for sensing the pres-
ence of a Primary User (PU) [3]. Furthermore, in order to enhance
the SS efficiency in wireless fading channels, a multidimensional
CR receiver has been studied considering multiple receive dimen-
sions at the CR receiver in the form of multiple antennas, oversam-
pled branches and cooperative nodes [6, 7, 8, 10]. These methods
are mostly based on the statistics of the eigenvalues of the received
signal’s covariance matrix and use recent results from Random Ma-
trix Theory (RMT). The main advantage of the eigenvalue based ap-
proach in practical scenarios is that it does not require any prior in-
formation about the PU’s signal and the channel.

1) Related Work: RMT has received considerable attention in
the SS literature for studying different eigenvalue based algorithms
[11, 7]. The contributions related to the eigenvalue based sensing
exploiting RMT methods include [6, 7, 8, 10, 11, 12, 13, 14, 15].
The existing techniques can be categorized into Maximum Eigen-
value (ME) based [14], Signal Condition Number (SCN) based [6,

7, 10, 12] and Scaled Largest Eigenvalue (SLE) based [15, 16]. The
ME based detection has been proposed in [14], which utilizes the
maximum eigenvalue of the received signal’s covariance matrix in
order to detect the presence of the PU signal. The authors in [11] use
the Marcenko-Pastur (MP) law to test a binary hypothesis assum-
ing the presence of the white noise. In [6], semi-asymptotic Max-
imum to Minimum Eigenvalue (MME) and Energy with Minimum
Eigenvalue (EME) algorithms for SS have been proposed using the
combination of the MP and Tracy-Widom (TW) distributions and
a ratio based technique has been proposed in [12] using the Tracy-
Widom Curtiss (TWC) distribution. The contribution in [17] pro-
vides a general framework for the Cumulative Distribution Function
(CDF) of the SCN of different classes of Wishart matrices. Fur-
thermore, in [18], analytic expressions for the Probability Density
Function (PDF) and CDF of the ratio of the maximum eigenvalue
to the trace of complex Wishart matrices with arbitrary dimensions
have been derived. Moreover, the recent contribution in [9] studies
an information-plus-noise transmission model to perform statistical
eigen-inference under the unknown noise correlation pattern.

In our previous work [19], the asymptotic analysis of different
eigenvalue-based blind sensing techniques such as SLE, SCN, John’s
detection and Spherical Test (ST) based detection has been carried
out and it has been shown that noise correlation significantly de-
grades the sensing performance of these techniques. Considering
the presence of noise correlation, the contribution in [10] proposes a
new sensing threshold for enhancing sensing performance based on
a theoretical analysis under a noise only hypothesis. Subsequently, a
Signal to Noise Ratio (SNR) estimation technique has been proposed
in order to estimate the PU SNR in the presence of correlated noise
based on the analysis under signal plus noise hypothesis. Further-
more, the contribution in [21] studies an SNR estimation technique
for a multidimensional CR receiver under correlated channel/noise
based on the maximum eigenvalue of the received signal’s sample
covariance matrix.

2) Contributions: Most of the eigenvalue based techniques in the
literature assume the presence of the white noise at the CR receiver.
However, in practice, the noise may be correlated due to imperfec-
tions in filtering interference or oversampling operations [6, 21].
Since the value of decision statistics in the presence of noise cor-
relation deviates from its value in uncorrelated scenarios, a sensing
threshold proposed for the uncorrelated scenario may not be suitable
for sensing in the presence of noise correlation [10]. While applying
the sensing threshold designed for the uncorrelated scenario in cor-
related scenarios, the value of the probability of a false alarm (Pf )
deviates from the target Pf value used for calculating the sensing
threshold, resulting in degraded sensing performance. To address
this issue, we consider the problem of detecting the PU’s signal in
the presence of noise correlation at the CR receiver. We analyze
the considered correlated scenario using a tilted semicircular distri-
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bution for modeling the noise covariance matrix as in [22], which
resembles the exponential covariance model considered in various
previous works [10, 13, 24, 23]. Furthermore, we use recent RMT
results on the universality of the maximum eigenvalue of a class of
sample covariance matrices from [27] in order to derive the expres-
sion for the sensing threshold, which is the main contribution of this
paper. Subsequently, the proposed threshold is used for sensing the
presence of a PU signal in practical scenarios where noise correla-
tion is always present. Moreover, the performance of the proposed
approach is evaluated in terms of the false alarm deviation and prob-
ability of correct decision. We define the false alarm deviation as
the absolute difference between the observed Pf and the target Pf

used for determining the sensing threshold. Furthermore, we define
the probability of correct decision as the number of correct decisions
out of the total considered cases under both hypotheses as in [10, 13].

The remainder of this paper is structured as follows: Section 2
provides the signal and channel model. Section 3 presents the anal-
ysis for the correlated noise case considering a tilted semicircular
distribution and derives the expressions for the mean and variance.
Section 4 proposes a sensing threshold for the ME detection in the
presence of noise correlation. Section 5 studies the sensing perfor-
mance of the proposed approach with the help of numerical results.
Section 6 concludes the paper.

3) Notation Throughout this paper, boldface upper and lower
case letters are used to denote matrices and vectors respectively, E[∙]
denotes the expectation, (∙)T denotes the transpose matrix, (∙)H de-
notes the conjugate transpose matrix, (∙)∗ represents the complex
conjugate, C denotes complex numbers, | ∙ | denotes the absolute
operation, RX represents the covariance matrix of X, and λmax(∙)
denotes the maximum eigenvalue of a matrix.

2. SIGNAL MODEL

Let us consider a single cognitive user and a single PU for simplic-
ity of analysis. Let N be the number of samples analyzed by the
cognitive user for the decision process and τ the sensing duration.
Let M be the number of receive dimensions in a CR receiver. From
a system-model point of view, this factor can be considered as the
number of antennas in a multiantenna-based CR receiver and/or the
number of oversampled branches in an oversampling-based sensing
model as considered in [6, 7, 10].

We assume that the transmitted symbols are independent and
identically distributed (i.i.d.) complex circularly symmetric (c.c.s.)
symbols, the noise samples in each receive dimension are indepen-
dent and c.c.s. Gaussian but are correlated across receive dimen-
sions. Depending on the nature of wireless channels and the relation
between sensing duration τ and symbol duration Ts, different signal
models can be considered [13]. In this work, we assume that τ > Ts

and the channel remains constant during the period of sensing. The
M × N received signal model in this case can be written as:

Y = hs + Ẑ, (1)

where h = [h1, h2, . . . , hM ]T is an M × 1 vector with hm repre-
senting a channel coefficient between the mth receive branch and the
PU, s is an 1 × N PU transmitted signal i.e., s = [s1, s2, . . . , sN ],
with si being a transmitted symbol with power pi = E[s2

i ], and
Ẑ ∼ CN (0,RẐ(N)) is the colored noise. Let us denote the hy-
potheses of the presence and absence of the PU signal by H1 andH0

respectively. The binary hypothesis testing problem for deciding the
presence of a PU signal can be written as:

H0 : Y = Ẑ, H1 : Y = hs + Ẑ. (2)

Let us define the sample covariance matrices of the received signal
and the noise as: RY(N) = 1

N
YYH and RẐ(N) = 1

N
ẐẐH . Un-

der the H0 hypothesis, the sample covariance matrix of the received
signal becomes equal to the sample covariance matrix of the noise
i.e., RY(N) = RẐ(N). Since our detection method depends only
on statistics of RẐ(N), all the signal types can be considered under
this framework.

1) Noise Correlation Modeling: The causes of noise correla-
tion for a multi-dimensional CR in practical scenarios have been dis-
cussed in [21]. In this study, we consider noise correlation across the
receive dimensions and not across the temporal dimension as men-
tioned before. To model this scenario, we consider the one-sided
noise correlation model as in [10]. The correlated noise Ẑ is mod-
eled as: Ẑ = Θ1/2Z, where Z is an M × N matrix with i.i.d.
complex Gaussian entries having zero mean and variance σ2

z , rep-
resenting the white noise and Θ1/2Θ1/2 = Θ = E[ẐẐH ]. It can
be noted that since Z ∼ CN (0, σ2

zI), ZZH follows an uncorrelated
Wishart distribution i.e., ZZH ∼ WM (RZ, N). We consider the
normalization (1/M)trace{Θ} = 1 in order to ensure that Θ does
not affect the noise power. The components of Θ using an exponen-
tial covariance model can be defined as [24]:

θij ∼

{
ρ(j−i), i ≤ j(
ρ(i−j)

)∗
, i > j

(3)

where θij is the (i, j)th element of Θ and ρ ∈ C is the correlation
coefficient with | ρ |≤ 1.

2) ME based Detection: The decision statistics for this detection
method is the ratio of the maximum eigenvalue to the noise vari-
ance, also called Roy’s Largest Root Test (RLRT) in the literature
[25]. The performance analysis of this detector has been carried out
in [25, 26] under white noise scenarios and it has been shown that
this detector outperforms the ED technique for Gaussian signals. Let
γc be the sensing threshold used for the decision process in the con-
sidered correlated scenario. The binary hypothesis based on the ME
method can be expressed as:

decision =

{
H0, if

λmax(R
Ẑ

(N))

σ2
z

≤ γc

H1, otherwise.
(4)

3. ANALYSIS UNDER H0 HYPOTHESIS

Let R̂Z(N) = N
σ2

z
RZ(N) denote the normalized sample covari-

ance matrix under the white noise scenario. Under the assumption
N, M → ∞ with N/M → β and under white noise (complex)

scenarios, the random variable λmax(R̂Z(N))−ν
σ

with σ = (
√

M +
√

N)(1/
√

M +1/
√

N)
1
3 and ν = (

√
M +

√
N)2 converges to the

Tracy-Widom distribution of order 2 (TW2) [6, 12, 29], which can
be stated as:

λmax(R̂Z(N)) − ν

σ
=⇒ TW2. (5)

The TW2 distribution can be defined as [30]:

F2 = exp

(

−
∫ +∞

s

(x − s)q2(x)dx

)

, (6)

where q(s) is the solution of the Painlevé II differential equation
q′′(s) = sq(s) + 2q3(s) satisfying the condition q(s) ∼ −Ai(s)
(the Airy function) for s → +∞. Due to involvement of a nonlin-
ear differential equation, it is generally complex to evaluate the TW
distribution. However, due to its important application in RMT, this
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distribution has been widely studied and tables for the functions are
available in the literature [29].

The contributions in [6, 14] have exploited the above result in
order to derive the expression for sensing threshold in terms of Pf .
The eigenvalue-based detection technique has been analyzed in the
presence of noise correlation in [10] using the SCN based asymptotic
approach. However, the asymptotic threshold used in [10] does not
depend on the value of Pf . In practical scenarios, we may need to
vary the decision threshold based on the acceptable value of Pf . In
this context, we are interested in finding out a theoretical expression
for the sensing threshold as a function of Pf in the presence of noise
correlation for the case of the ME detector using recent RMT results
obtained in [27].

Under theH0 hypothesis, the sample covariance matrix RY(N)
in the presence of noise correlation can be written as:

RY(N) = RẐ(N) =
1

N
Θ1/2ZZHΘ1/2. (7)

To model the distribution of the noise covariance matrix Θ, we use
tilted semicircular distribution as in [10, 22]. The tilted semicircular
distribution can be written as [22]:

fΘ(λ) =
1

2πμλ2

√(
λ

σ1
− 1

)(

1 −
λ

σ2

)

, (8)

with σ1 ≤ λ ≤ σ2 and μ =
(
√

σ2−
√

σ1)2

4σ1σ2
.

Let us define the normalized sample covariance matrix under the
correlated noise scenario as: R̂Ẑ(N) = 1

σ2
z
RẐ(N) . From [Theo-

rem 1.5, [27]], the normalized sample covariance matrix R̂Ẑ(N) 1

follows the TW2 distribution in the following way

N2/3

(
λmax(R̂Ẑ(N)) − νc

σc

)

=⇒ TW2, (9)

where σ3
c = 1

c3

(

1 + 1
β

∫ (
λc

1−λc

)3

dFΘ(λ)

)

, and

νc = 1
c

(
1 + 1

β

∫
λc

1−λc
dFΘ(λ)

)
. The value of c in the above ex-

pressions can be obtained by solving the following equation [27, 28]

∫ (
λc

1 − λc

)2

dFΘ(λ) =

∫ (
λc

1 − λc

)2

fΘ(λ)dλ = β. (10)

It should be noted that the value of c is unique in the range c ∈
[0, 1/λmax(Θ)]. Substituting the distribution of Θ from (8) in (10)
yields the following expression

∫ (
λc

1 − λc

)2
1

2πμλ2

√(
λ

σ1
− 1

)(

1 −
λ

σ2

)

− β = 0. (11)

Furthermore, the ratio σ2/σ1 in (8) can be written as [22]: σ2
σ1

= (1+ρ)2

(1−ρ)2
.

Using the above relation and σ1σ2 = 1, the values of σ1 and σ2 can
be written as: σ1 = 1−ρ

1+ρ
, σ2 = 1+ρ

1−ρ
. Substituting the values of σ1

and σ2 in (11) and taking integration limits from σ1 to σ2, (11) can
be written as:

c2

2πμ

∫ σ2

σ1

1

(1 − λc)2

√
−λ2 − 1 + 2λμ1dλ − β = 0, (12)

1This normalization is used by considering the fact that the sample co-
variance matrix of the form (7) with variance 1/N follows Theorem 1.5 in
[27].

where μ1 = (1 + ρ2)/(1 − ρ2). Similarly, the expressions for νc

and σ3
c can be written as:

νc =
1

c

(

1 +
c

2πμβ

∫ σ2

σ1

1

(1 − λc)λ

√
−λ2 − 1 + 2λμ1dλ

)

, (13)

σ3
c =

1

c3

(

1 +
c3

2πμβ

∫ σ2

σ1

λ

(1 − λc)3

√
−λ2 − 1 + 2λμ1dλ

)

. (14)

4. DERIVATION OF SENSING THRESHOLD

In this section, we derive an analytical expression for the sensing
threshold for the considered ME detection following the approach
used in [6, 14]. In practice, a CR receiver should be able to detect
the presence of PU signals with higher probability of detection (Pd)
and low Pf . However, there exists a trade-off between these two
parameters and the sensing threshold should be selected to meet the
required value of Pf . Since it’s not practical to set a threshold based
on the value of Pd due to absence of the knowledge about the PU
signal, the threshold is usually determined based on the predefined
value of Pf . The contribution in [14] proposes a sensing threshold
for the ME detection for the white noise case, which can be written
as [12, 14]:

γ =
(
√

N +
√

M)2

N

(

1 +
(
√

N +
√

M)−2/3

(NM)1/6
F−1

2 (1 − Pf )

)

.

(15)
In correlated noise scenarios, the detection with the threshold in (15)
may not provide perfect sensing performance. For this purpose, we
propose a new threshold for the ME detector using the analysis pre-
sented in Section 3. The probability of false alarm of the ME based
detection is given by

Pf = P (λmax(RẐ) > γcσ
2
z) = P (σ2

zλmax(R̂Ẑ) > γcσ
2
z),

= P

(

N2/3 λmax(R̂Ẑ) − νc

σc
> N2/3 γc − νc

σc

)

. (16)

Subsequently, using the condition (9), (16) can be written as:

Pf = 1 − F2

(

N2/3

(
γc − νc

σc

))

. (17)

Equivalently, the above expression can be written as:

N2/3

(
γc − νc

σc

)

= F−1
2 (1 − Pf ). (18)

Subsequently, the value of γc can be calculated as:

γc =
σcF

−1
2 (1 − Pf ) + N2/3νc

N2/3
. (19)

5. NUMERICAL RESULTS

We analyze the performance of the proposed sensing approach in
terms of false alarm deviation and the probability of correct deci-
sion. The false alarm deviation is defined as: |Pft − Pfs|, where
Pft is the target value of Pf , which is usually chosen based on the
sensing requirements of a wireless standard and Pfs is the simulated
value of Pf observed during the decision process. The probability of
correct decision refers to the ratio of the number of correct decisions
to the total number of considered cases under both hypotheses and is
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Fig. 1. Theoretical and simulated CDF plots for different random variables
(N = 300, β = 1, ρ = 0.5)
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Fig. 2. False alarm deviation versus ρ (N = 100, β = 2, Pf = 0.001)

defined as [10, 19]: (Pd +(1−Pf ))/2, where Pd and 1−Pf denote
the number of correct decisions out of the total considered cases un-
der H1 and H0 hypotheses respectively. The number of cases con-
sidered in the presented simulation results were 103. We consider
a flat fading Rayleigh fading channel in our simulation model and
its coefficients are generated from random complex numbers whose
real and imaginary components are i.i.d. Gaussian variables. We as-
sume perfect knowledge of the noise variance as in [14, 25, 26]. In
practice, this knowledge can be acquired by using noise covariance
estimation techniques as in [32].

In order to validate the theoretical analysis presented in Sec-
tion 3, we present CDF plots for the following cases in Fig. 1:
(i) Theoretical TW2 distribution from (6), (ii) Scaled theoretical
TW2 for the uncorrelated case, obtained by scaling the TW2 dis-
tribution based on (5) (iii) Scaled theoretical TW2 for the corre-
lated case, obtained by scaling the TW2 distribution based on (9),
(iv) Simulated uncorrelated case, obtained by considering 103 re-
alizations of λmax(RZ(N)), and (v) Simulated correlated case, ob-
tained by taking 103 realizations of λmax(RẐ(N)). From the figure,
we note that the CDF of λmax(RZ(N)) matches perfectly with the
theoretical TW2 distribution, scaled based on (5) and the CDF of
λmax(RẐ(N)) matches perfectly with the theoretical TW2 distri-
bution, scaled based on (9). From this result, it can be concluded that
the TW2 distribution can be used for deriving the sensing threshold
under the considered correlated scenario considering the mean and
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Fig. 3. Probability of correct decision versus SNR (N = 100, β = 2, Pf =
0.07, ρ = 0.5)

variance expressions derived in Section 3.
While using the sensing threshold γ, given by (15), under the

correlated noise case, the value of Pf deviates from that of the tar-
get value used in determining the sensing threshold. This has been
illustrated in Fig. 2, which shows the false alarm deviation versus
correlation coefficient. From the figure, it can be noted that the pro-
posed threshold γc, given by (19), compensates for this deviation
and the difference in Pf is almost zero as in the uncorrelated case
while using the sensing threshold γ.

Figure 3 depicts the probability of correct decision versus SNR
at a fixed false alarm rate of Pf = 0.07 for 3 different cases with pa-
rameters (N = 100, β = 2, ρ = 0.5). From the figure, we note that
although the correlated case with the threshold γ performs better for
low SNR values, it can not achieve the perfect sensing performance
(even at higher SNR values). The perfect sensing is the condition in
which there occur no false alarm and no miss detection. The corre-
lated case with the proposed threshold λc improves the sensing per-
formance and achieves the perfect sensing performance above the
SNR value of −10 dB. Therefore, it can be concluded that the pro-
posed threshold for the ME based detection can be used for sensing
under correlated noise scenarios.

6. CONCLUSION

In this paper, the maximum eigenvalue based detection was stud-
ied for sensing the PU signal under correlated noise scenarios. The
theoretical analysis of the considered technique has been carried out
under a noise only hypothesis using recent RMT results on the dis-
tribution of the maximum eigenvalue for a class of sample covari-
ance matrices. Furthermore, an expression for the sensing thresh-
old has been derived in terms of the probability of false alarm and
system parameters. From the simulation results, it has been noted
that the probability of false alarm for the considered correlated case
increases with the increase in the correlation level and the proposed
threshold compensates for this deviation. Hence, it can be concluded
that the proposed sensing approach significantly improves the sens-
ing performance in correlated noise scenarios.

ACKNOWLEDGEMENT

This work was supported by the National Research Fund, Luxem-
bourg under AFR grant for a PhD project (Reference 3069102) and
the CORE projects CO2SAT and SEMIGOD.

7321



7. REFERENCES

[1] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: An information theoretic perspective,”
proc. IEEE, vol. 97, no. 5, pp. 894 –914, May 2009.

[2] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Satellite cognitive
communications: Interference modeling and techniques selection,” in
Proc. 6th ASMS/SPSC Conf., Sept. 2012, pp. 111 –118.

[3] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum Sensing
for Cognitive Radio : State-of-the-Art and Recent Advances,” IEEE
Signal Processing Magazine, vol.29, no.3, pp.101 –116, May 2012.

[4] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Exploiting polariza-
tion for spectrum sensing in cognitive SatComs,” in Proc. 7th Int. Conf.
CROWNCOM, June 2012, pp. 36 –41.

[5] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Spectrum sensing in
dual polarized fading channels for cognitive SatComs,” in Proc. IEEE
Globecom Conf., Dec. 2012, pp. 3419 –3424.

[6] Y. Zeng and Y.-C. Liang, “Eigenvalue-based spectrum sensing algo-
rithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, pp.
1784 –1793, 2009.

[7] W. Zhang, G. Abreu, M. Inamori, and Y. Sanada, “Spectrum sensing
algorithms via finite random matrices,” IEEE Trans. Commun., vol. 60,
no. 1, pp. 164 –175, Jan. 2012.

[8] A. Kortun, T. Ratnarajah, M. Sellathurai, C. Zhong, and C. Papadias,
“On the performance of eigenvalue-based cooperative spectrum sensing
for cognitive radio,” IEEE J. Selected Topics Signal Process., vol. 5,
no. 1, pp. 49 –55, Feb. 2011.

[9] J. Vinogradova, R. Couillet, and W. Hachem, “Statistical Inference in
Large Antenna Arrays Under Unknown Noise Pattern,” IEEE Trans.
Signal Process., vol. 61, no. 22, pp.5633-5645, Nov. 2013.

[10] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Eigenvalue based sens-
ing and SNR estimation for cognitive radio in presence of noise corre-
lation,” IEEE Trans. Veh. Technol., vol. 62, no. 8, pp. 3671 –3684, Oct.
2013.

[11] L. Cardoso, M. Debbah, P. Bianchi, and J. Najim, “Cooperative spec-
trum sensing using random matrix theory,” in proc. 3rd Int. Symp. Wire-
less Pervasive Comp., May 2008, pp. 334 –338.

[12] F. Penna, R. Garello, and M. Spirito, “Cooperative spectrum sensing
based on the limiting eigenvalue ratio distribution in Wishart matrices,”
IEEE Commun. Letters, vol. 13, no. 7, pp. 507 –509, July 2009.

[13] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “The effect of noise
correlation on fractional sampling based spectrum sensing,” in Proc.
IEEE ICC, June 2013, pp. 1182 –1187.

[14] Y. Zeng, C. Koh, and Y.-C. Liang, “Maximum eigenvalue detection:
Theory and application,” in Proc. IEEE ICC, May 2008, pp. 4160 –
4164.

[15] P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum
sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol. 59, no. 4,
pp. 1791 –1800, May 2010.

[16] P. Bianchi, M. Debbah, M. Maida, and J. Najim, “Performance of sta-
tistical tests for single-source detection using random matrix theory,”
IEEE Trans. Info. Th., vol. 57, no. 4, pp. 2400 –2419, 2011.

[17] M. Matthaiou, M. Mckay, P. Smith, and J. Nossek, “On the condition
number distribution of complex wishart matrices,” IEEE Trans. Com-
mun., vol. 58, no. 6, pp. 1705 –1717, June 2010.

[18] A. Kortun, M. Sellathurai, T. Ratnarajah, and C. Zhong, “Distribution
of the ratio of the largest eigenvalue to the trace of complex wishart
matrices,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5527 –
5532, Oct. 2012.

[19] S. Chatzinotas, S. K. Sharma, and B. Ottersten, “Asymptotic analysis
of eigenvalue-based blind spectrum sensing techniques,” in Proc. IEEE
ICASSP, May 2013, pp. 4464 –4468.

[20] S. Chatzinotas, S. K. Sharma, and B. Ottersten, “Multiantenna signal
processing for cognitive communications”, in Proc. IEEE ChinaSIP,
July 2013, pp. 293-297.

[21] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “SNR estimation for
multi-dimensional cognitive receiver under correlated channel/noise,”
IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6392–6405, Dec.
2013.

[22] X. Mestre, J. Fonollosa, and A. Pages-Zamora, “Capacity of MIMO
channels: asymptotic evaluation under correlated fading,” IEEE J. Sel.
Areas Commun., vol. 21, no. 5, pp. 829 –838, 2003.

[23] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Eigenvalue based SNR
Estimation for Cognitive Radio in Presence of Channel Correlation,” in
Proc. IEEE Globecom, Dec. 2013, pp. 1107-1112.

[24] S. Chatzinotas, M. Imran, and R. Hoshyar, “On the multicell processing
capacity of the cellular MIMO uplink channel in correlated Rayleigh
fading environment,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp.
3704 –3715, July 2009.

[25] B. Nadler, F. Penna, and R. Garello, “Performance of Eigenvalue-Based
Signal Detectors with Known and Unknown Noise Level,” in Proc.
IEEE Int. Conf. Commun., June 2011, pp. 1 –5.

[26] L. Wei, O. Tirkkonen, “Cooperative spectrum sensing of OFDM signals
using largest eigenvalue distributions,” in Proc. IEEE Personal, Indoor
and Mobile Radio Commun., Sept. 2009, pp. 2295 –2299.

[27] Z. Bao, G. Pan, and W. Zhou “Universality for the largest eigen-
value of a class of sample covariance matrices,” online, July 2013,
http://arxiv.org/abs/1304.5690v4.

[28] N. El Karoui, “Tracy-Widom limit for the largest eigenvalue of a large
class of complex sample covariance matrices”, Ann. Probab. vol. 35,
no. 2, pp. 663 –714, 2007.

[29] I. M. Johnstone, “On the distribution of the largest eigenvalue in prin-
cipal component analysis,” Annals of Statistics, vol. 29, no. 2, pp. 295
–327, 2001.

[30] C. Tracy and H. Widom, “On the distribution of the largest eigenvalue
in principal component analysis,” Comm. Math. Phys, vol. 177, pp. 727
–754, 1996.

[31] A. M. Tulino and S. Verdu, “Random matrix theory and wireless com-
munications,” Foundations and Trends in Commun. and Inf. Th., vol. 1,
no. 1, pp. 1–182, 2004.

[32] D. R. Joshi, D. C. Popescu, O. A. Dobre, “Adaptive spectrum sensing
with noise variance estimation for dynamic cognitive radio systems,”
in Proc. 44th Annual Conf. Information Sciences and Systems, March
2010, pp. 1-5.

7322


