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ABSTRACT
Wideband spectrum sensing improves the agility of spectrum sens-
ing and spectrum hand-off in cognitive radio systems. In this paper,
a distributed wideband spectrum sensing technique over adaptive
diffusion networks is proposed. Considering unknown and different
channels between the primary and the cognitive users, an averaged
received power spectrum across all the cognitive users is estimated
by each user using diffusion adaptation techniques. This averaged
power spectrum estimate is reliable enough for the users to perform
spectrum sensing and make a decision regarding the presence
or the absence of the primary user. The simulation results show
that the detection performance of the system improves with the
number of iterations. Further, a satisfactory detection performance
at low SNRs is achieved after a few iterations, which is a desired
characteristic for cognitive radio systems. Finally, it is shown that
the cooperative technique outperforms the non-cooperative one in
terms of estimation accuracy and detection performance.

Index Terms— Adaptive networks, distributed estimation, wide-
band spectrum sensing, cognitive radio.

I. INTRODUCTION

Reliable and agile spectrum sensing is a key functionality of
a cognitive radio (CR) system [1]. Wideband spectrum sensing
techniques improve the agility of the sensing process because
cognitive users search among multiple channels at the same time.
Further, in case a primary user (PU) returns to a currently empty
band, spectrum hand-off becomes faster.
Recently, cooperative distributed detection schemes without a

fusion center (FC) become more and more attractive [2][3][4].
Cooperative detection schemes are proposed in order to exploit
the spatial diversity, thereby improving the detection performance
of a CR network. Since CR networks generally consist of low-
power sensors, communication and energy constraints are critical
limitations. Therefore, detection schemes where no FC is needed
become appealing solutions. The focus of this paper is to propose
a new wideband sensing technique which gives a reliable detection
result in a short time, where no FC is necessary in scenarios where
the channel between the primary user and the cognitive radios
is unknown. Wideband spectrum sensing has been studied before
in the literature. A wideband spectrum sensing technique based
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on cooperative power spectrum estimation with sub-Nyquist rate
samples is considered in [5]. In [6], a wideband spectrum sensing
framework which identifies secondary transmission opportunities
over multiple non-overlapping narrowband channels is proposed.
The system is, however, complex because of the large number of
required bandpass filters. A FC-based wideband power spectrum
sensing technique is advocated in [7], where the FC is able to
reconstruct the power spectrum from a few single bits with a good
accuracy. The authors of [2] present a distributed spectrum sensing
scheme based on the consensus of the CR users to make the final
decision about the presence or the absence of the PU. The work
in [8] addresses the problem of the cooperative estimation of the
power distribution in space and frequency, which is carried out
exploiting sparsity and through a basis expansion model of the
power spectral density (PSD) map at arbitrary locations in space.
In [9], the authors propose a distributed spectrum sensing algorithm
over adaptive networks using diffusion adaptation. However, they
assume that the channel and the signal are known for every user,
and what is unknown is the presence or the absence of the signal.
Also, the authors of [4] employ adaptive diffusion techniques
to estimate the power spectrum in order to leverage a dynamic
resource allocation process. The PSD of the primary user, which is
represented as a linear combination of some preset basis functions,
is estimated from the observed noisy measurements of the PSD via
diffusion adaptation. However, the channel between the primary
user and CR sensors is assumed to be known.

In this paper, distributed wideband spectrum sensing over adap-
tive diffusion networks is considered. Similar to [4], we focus
on distributed wideband PSD estimators. However, we follow a
different approach as channels are unknown and different for every
user, which is mostly the case in CR networks. Each sensor
computes an autocorrelation vector by collecting N noisy samples
of the received signal at each iteration. This vector is then used in
order to locally compute a power spectrum estimate in a least mean
squares (LMS) fashion. As the PSD estimate does not need to be
extremely accurate but precise enough to identify the bands used by
the PU, an averaged received PSD estimate across all the sensors
is then computed at every user. Cognitive users receive the current
local PSD estimates of the immediate neighbors and combine them
following a specific combination rule. The rule, which is known to
all the sensors, can be chosen according to the available information
at the sensors, and it can range from a simple averaging operation
to a more intelligent weighted combination [10]. In this way,
weighting the received power spectrum of neighbors can help those
users with bad channels to improve their detection capabilities.
We further propose three decision statistics to be compared with a
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threshold, λ, in order to decide about the presence or the absence
of the PU at each user and in each iteration.
Diffusion adaptation techniques are usually employed to estimate

a common parameter of interest (typically the PSD of the primary
user in a detection scenario). However, simulation results will show
that this strategy can be satisfactorily employed in order to estimate
an average PSD in unknown channel scenarios, what is deemed to
be good enough to perform the detection task.
The remainder of the paper is organized as follows. Distributed

power spectrum estimation over adaptive diffusion networks is
proposed in Section II. In Section III, the proposed estimated power
spectrum is used in order to detect the presence or the absence of
the primary user. Simulation results are provided in Section IV,
and we draw our conclusions in Section V.

II. POWER SPECTRUM ESTIMATION BASED ON
ADAPTIVE DIFFUSION

A network of K nodes (cognitive radio users) is considered.
The set of nodes connected to the node k, including itself, is
the neighborhood of the node k, which is denoted as Nk. The
primary user signal is assumed to be a wide-sense stationary
wideband signal denoted by s(n). Denoting xk(n) to be the
observation at node k and time n, the received signal is modeled
as xk(n) = hk(n) ∗ s(n) + vk(n) =

∑p−1

j=0
hk(j)s(n − j) +

vk(n). Here, vk(n) denotes the additive-white-Gaussian noise,
which follows an i.i.d. distribution with zero mean and variance
σ2
vk
, and hk(n) is the channel between the primary user and the

sensor k, which is modeled as a finite impulse response (FIR)
filter of length p. At iteration m, each sensor collects N noisy
observations, so that the N × 1 observation vector xk,m is defined
as xk,m = [xk(Nm), xk(Nm+ 1), ..., xk(Nm+N − 1)]T for
m = 0, 1, 2, ..., where (·)T denotes the transpose operation.
We denote by rk(l) the autocorrelation of the received sig-

nal xk(n) at lag l, rk(l) = E {xk(n)x
∗
k(n− l)}, where (·)∗

denotes the complex conjugate operation. The power spectrum
of xk(n) is the discrete-time Fourier transform (DTFT) of the
autocorrelation function rk(l), Pk(ω) =

∞
∑

l=−∞
rk(l)e

−jωl, where

Pk(ω) is real and non-negative. Then, from xk,m, each sensor
can build an estimate R̂k,m of the N × N autocorrelation matrix
Rk,m = E

{

xk,mxHk,m
}

, where the elements of R̂k,m are computed

as
[

R̂k,m

]

ij
= r̂k,m(i− j) = r̂∗k,m(j − i) = 1

N

N−l−1
∑

τ=0

xk,m(τ +

l)xHk,m(τ ) for l ≥ 0.
As the columns of R̂k,m contain the same information

(i.e., the N -lag autocorrelation), that information can be
collected into the (2N − 1) × 1 autocorrelation vector r̂k,m =
[r̂k,m(1−N)..., r̂k,m(−1), r̂k,m(0), r̂k,m(1), ..., r̂k,m(N − 1)]T .
Since the autocorrelation vectors have finite size, only a
windowed estimate of the power spectrum can be obtained as

P̂k,m(ω) =
N−1
∑

l=1−N

r̂k,m(l)e−jωl. Hence, if the frequency axis is

discretized, a (2N − 1)-point estimate of the power spectrum can
be obtained based on the following linear relationship

p̂k,m = Fr̂k,m, (1)

with p̂k,m(f) = P̂k,m

(

2πf
2N−1

)

, for f = 0, 1, ...2N − 1 and F is
the (2N −1)× (2N −1) discrete Fourier transform (DFT) matrix.

Note that (1) can be rewritten as r̂k,m = FH p̂k,m, where (·)H

denotes the Hermitian operation.
Since the autocorrelation estimate depends on the observed data

xk,m, r̂k,m is different for each iteration m, and so p̂k,m. In addi-
tion, given that sensors have unknown different channels, it is hard
to compute the PSD of the PU; however, each sensor can adaptively
compute an averaged estimate of the received PSD using a diffusion
adaptation strategy. Several diffusion adaptation schemes have been
proposed in the literature (see [10] and references therein), and one
of them is the adapt-then-combine (ATC) diffusion algorithm [11].
It consists of two steps. The first one involves local adaptation,
where each sensor k updates its local estimate ϕk,m using the
combined estimate from the previous iteration, p̂k,m−1

, and its own
data, r̂k,m, as follows

ϕk,m = p̂k,m−1
+ µkF

[

r̂k,m − FH p̂k,m−1

]

, (2)

where µk is a constant positive step size, which is chosen to be
sufficiently small to ensure convergence [10].
The second step is a combination stage where the intermedi-

ate estimates of the received power spectrum
{

ϕz,m

}

from the
neighborhood of sensor k (z ∈ Nk) are combined through the
coefficients {az,k} to obtain the updated estimate p̂k,m as follows

p̂k,m =
∑

z∈Nk

az,kϕz,m, (3)

where the combining weights {az,k}, collected into the
N × N matrix A as [A]z,k = az,k, should satisfy
A1 = 1 and az,k = 0 if z /∈ Nk, where 1 stands for
a column vector with all elements equal to one. Note that different
channel gains result in different received PSD at users, so that an
averaged received PSD estimate across all the sensors is obtained in
(3). Besides, as sensors only exchange estimates with their one-hop
neighbors, the estimate p̂k,m is not exactly same (as in consensus
techniques), but similar for all sensors k.
Several approaches have been proposed in the literature in order

to select the combining weights. More specifically, denoting ξz,k,m
as the power spectrum estimation error (with regard to the true
averaged PSD) of node z available at node k, at iteration m, in this
paper, following the idea of [10], we use a combination rule where
node k combines the local received power spectrum estimates from
its neighbors in an inversely proportional manner to the estimation
error

az,k,m =











ξ−2

z,k,m
∑

j∈Nk

ξ−2

j,k,m

if z ∈ Nk

0 otherwise
(4)

As the power spectrum estimation errors from the neighbors of
node k are unavailable (and change every iteration), node k can
estimate them recursively from its own previous estimate as

ξ̂2z,k,m = (1− ηk)ξ̂
2

z,k,m−1 + ηk
∥

∥ϕz,m − p̂k,m−1

∥

∥

2

2
, (5)

where ηk is a small positive step size. In this combination rule,
nodes with smaller estimation errors will be given larger weights.

III. SPECTRUM SENSING USING POWER SPECTRUM
ESTIMATION

In this section, we present the detection algorithm which is
employed by the cognitive users to determine the presence or the
absence of the primary user. Denoting H1 and H0 as the hypothesis
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representing the presence and the absence of the primary user,
respectively, our goal is to solve the following binary hypothesis
testing problem

H0 : xk(n) = vk(n) k = 1, 2, ...K

H1 : xk(n) = hk(n) ∗ s(n) + vk(n) k = 1, 2, ...K. (6)

The channel is generally not known at the cognitive radios. There-
fore, the cognitive sensors need to use detection techniques which
perform well when the channel state information is not available
or not perfect. To employ the earlier discussed power spectrum
estimation technique for spectrum sensing is then a good strategy in
order to tackle the lack of channel state information at the cognitive
sensors. Here, we employ the estimate in (3) in order to solve
the binary hypothesis problem in (6). Denoting S as the set of
available estimated frequencies in the band of interest, three pos-
sible decision statistics can be: (a) Tk,m = 1

|S|

∑

fs∈S
p̂k,m(fs), (b)

Tk,m = max
fs∈S

p̂k,m(fs), and (c) Tk,m = p̂k,m(fc), where Tk,m is
the decision statistic, and fc is the carrier frequency of the desired
band. This way, the decision regarding the presence or the absence
of the primary user at each sensor is made locally by the following

rule Tk,m

H1

!
H0

λk,m, with λk,m denoting the detection threshold

at sensor k and iteration m. Note that although the decision about
the presence of the PU is made locally by each sensor, it becomes
the global one due to the fact that sensors converge towards the
desired estimate with acceptable mean square error bounds using
the diffusion technique. The associated probabilities of false alarm
and detection, denoted by Pf,k,m and Pd,k,m, respectively, are then
defined as Pf,k,m = Pr(H1|H0) = Pr(Tk,m ≥ λk,m|H0) and
Pd,k,m = Pr(H1|H1) = Pr(Tk,m ≥ λk,m|H1).

IV. SIMULATIONS

In this section, we evaluate the performance of the proposed
scheme. Two approaches have been compared; the non-cooperative
one (sensors do not exchange information with their neighbors and
estimate the received PSD at each sensor, i.e., p̂k,m = ϕk,m) and
the cooperative one, where the parameter ηk in (5) is set to 0.2
and µk = 0.1 for all the sensors. The cognitive network consists
of K = 15 nodes with a topology as shown in Fig. 1.
We consider a complex baseband representation of an OFDM

signal, with a wide frequency band of interest, ranging from −40
to 40 MHz, which contains 10 non-overlapping channels of equal
bandwidth (8 MHz). Each symbol has 64 frequencies but only
52 are activated, with 16-QAM modulation and a cyclic prefix
length of 16. The oversampling factor is 16. Some of the 10 non-
overlapping channels might not be used by primary users and hence,
are available for secondary transmissions.










 












 

 









 





Fig. 1. Network topology
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Fig. 2. True power spectrum (ps) and the estimated power spectrum for
the cooperative and non-cooperative schemes for those sensors having
the highest and the lowest SNR (HSNR and LSNR).

IV-A. The averaged estimated power spectrum density
Initially, we analyze how good the averaged received PSD

estimate is regarding the true PSD to verify if each user should
rely on the obtained estimate to perform detection. Note that our
main goal is not designing a good PSD estimator but performing
detection satisfactorily by first identifying the occupied bands. The
signal s(n) is corrupted by additive white Gaussian noise vk(n),
whose variance σ2

vk
varies from one sensor to another so that the

SNR at each node is taken from a uniform distribution between
[0,20] dB. We consider two types of channels hk(n). The first
case is a static one-tap FIR filter whose gain is constant (hk = 1)
during all time instants. The second case is a block-fading time-
varying one-tap FIR filter, modeled as an i.i.d. zero mean random
Gaussian variable with variance σ2

h = 1. Here, only three channels
are occupied with different power levels (10 dB, 20 dB and 5 dB).
The metric which is used to compare the quality of the estimate

is the network normalized mean square deviation (NMSD), which
is defined as

NMSD =
1
K

K
∑

k=1

‖p̂k − ps‖
2

‖ps‖
2

(7)

where ps is the true power spectrum density (corresponding to the
non-noisy signal s(n)).
Fig. 2 depicts the true power spectrum and the averaged received

power spectrum obtained by the cooperative and non-cooperative
approaches where the number of collected samples at each iteration
is N = 64 considering a static channel. The spectra corresponding
to the sensor with the highest and lowest SNR (19.65 dB and
0.31 dB, respectively) have been plotted. The presence of active
frequency bands is well-estimated and the quality of the estimation
is satisfactory. We can see that employing the diffusion algorithm,
the power spectrum estimation at nodes with different SNRs reaches
almost the same value after a number of iterations. This is clearly
not observed for the non-cooperative network.
Fig. 3 shows the average evolution of the network NMSD for

1000 realizations when σ2
vk
varies, so that the SNR at each node

is taken from a uniform distribution between [−10,10] dB, for
both the static and the block-fading time-varying channel. It can
be observed that the estimation error achieved by the cooperative
scheme is lower than the error achieved by the non-cooperative
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Fig. 4. Network NMSD for different number of collected observations
at each iteration (N) and channel types.

technique. As expected, the estimation error is higher when a time-
varying channel is considered.
Besides, the network NMSD (for steady state), which is averaged

over 1000Monte-Carlo simulations, has been analyzed for different
numbers of collected samples at each iteration and is illustrated in
Fig. 4 for both the static and the block-fading time-varying channel.
According to the previous results, the network NMSD achieved by
the cooperative approach is lower than the non-cooperative one.
Further, and as can be expected, the higher the N value is, the
lower the estimation error is, because more samples are used to
compute the autocorrelation.
IV-B. Detection performance analysis
The same CR network used for the estimation section is consid-

ered for the detection performance analysis (Fig. 1). The channel
is assumed static and the static gain hk is computed so that
the SNR of each sensor is randomly chosen between −20 dB
and 0 dB, considering σ2

vk
= 1. The results are averaged over

1000 simulations where only one frequency band is activated. In
order to detect the primary user, each sensor uses the decision
statistic defined in (a), i.e., Tk,m = 1

|S|

∑

fs∈S
p̂k,m(fs). Further, the

hypothesis testing problem is applied as data arrive at each iteration.
The probability of detection and false alarm versus the number

of iterations are depicted in Fig. 5, for the sensors with the
highest and the lowest SNR. The detection threshold, which is
set experimentally, and the number of collected observations at
each iteration are set to λ = 0.19 dB and N = 64, respectively,
for all the sensors and iterations. It is shown that the probability
of detection improves significantly as the number of iterations
increases, while the probability of false alarm remains at an
acceptable level (approximately 0 except for the sensor with the
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Fig. 5. Detection performance for the sensor with (a) the highest SNR,
and (b) the lowest SNR, for SNR=[−20,0] dB and λ = 0.19 dB.

highest SNR, which is around 0.2). Furthermore, it is observed
that the adaptive cooperative spectrum sensing scheme outperforms
the non-cooperative one, both in the probability of false alarm and
the probability of detection. This way, we can see that distributed
wideband spectrum sensing delivers a reliable sensing performance,
while achieving a higher throughput than the single-user non-
cooperative scenario. Note that the probability of detection and false
alarm in the cooperative scheme is similar for both sensors. The
reason is that the local estimate at each sensor becomes the global
estimate. Further, the convergence of the cooperative scenario is
shown to be faster than the one for the non-cooperative scenario,
except for the convergence rate of the probability of detection for
the sensor with the highest SNR.

V. CONCLUSIONS

Distributed wideband spectrum sensing over adaptive diffusion
networks in scenarios with unknown channels was explored in this
paper. Every sensor computes a local received power spectrum
estimate using a distributed LMS algorithm, which is later com-
bined with those estimates obtained from their one-hop neighbors
in order to obtain an averaged received power spectrum estimate
among all the sensors. Later, a decision about the presence or the
absence of the licensed user is made based on this power spectrum
estimate. The simulation results showed that the proposed scheme
has a good performance, in terms of both estimation and detection,
outperforming the case when no cooperation among sensors is
carried out. Future lines include to compare our method with
other related state-of-the-art works, the systematic selection of the
detection threshold, and the design of censoring strategies for not
receiving estimates from those users with bad channels.
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