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ABSTRACT

In this paper we formulate a Multi-Armed Bandit Compressive Spec-
trum Sensing (MAB-CSS) problem, in which a Cognitive Receiver
(CR) decides dynamically how to best sense N sub-channels states,
that switch from being occupied to being available as independent
and statistically identical Markov chains. We assume that the CR is
endowed with K CSS samplers each sensing an arbitrary mixture of
the N signals in the sub-channels, and upon deciding what channels
are available, it collects an equal reward from each channel unoccu-
pied that is sensed. The MAB-CSS problem accounts for the ability
of the CR of sweeping a large spectrum and being able to reconstruct
the exact support of the N channels occupancy pattern, as long as
the latter is sufficiently sparse. This is a generalization of the typi-
cal model in which the CR can sense K out of the N sub-channels.
In choosing the compressive sensing strategy, the CR needs to con-
sider how to gather the most informative statistics on the spectrum
while not exceeding the limits beyond which the occupancy is no
longer identifiable. In this work, we study a simplified and noiseless
discrete sensing model and establish the structure of the optimum
MAB-CSS myopic policy.

Index Terms— Opportunistic access, multi-channel sensing,
cognitive radio, compressive sensing, myopic policy.

1. INTRODUCTION

The well established framework of the multi-armed bandit (MAB)
problem models the situation of a cognitive radio agent that simulta-
neously attempts to acquire new knowledge and to optimize its deci-
sions based on what it has previously learnt [1–10]. Both Bayesian
[2–8] and non-Bayesian [9,10] formulations of MAB have been con-
sidered for channel sensing and selection in cognitive radio systems.
When the occupancy of each channel is modeled as a Markov chain
with known transition probabilities, the dynamic channel selection
problem becomes a restless multi-armed bandit (RMAB) within the
Bayesian framework [4,5,11]. Most of the literature on online cogni-
tive radio algorithms assumes that the receiver can be tuned to filter
and sample different portions of the spectrum at different times; in
these models there is implicitly a one to one correspondence between
the total width of the spectrum explored and the number of samples
per second available (i.e. the Nyquist limit).

In contrast, advances in Compressive Spectrum Sensing (CSS)
[12–15] and finite rate of innovation (FRI) sampling [13, 16–19] are
being applied to expand the spectrum sensing range further than the
Nyquist limit, modeling the received signals as having a sparse struc-
ture, due to the spectrum holes the secondary users (SU) are wishing
to detect. While FRI sampling and CS are well established sensing

options for cognitive radio applications [20–22], active learning has
been considered somewhat in antithesis with the FRI or CS sensing
approach [23]. The drawback of static FRI or CSS front-ends is that
sparsity is desired but, unfortunately, not guaranteed.

Our objective is to combine the perspective of online learning
and MAB in particular, with new receiver architecture that not only
can leverage on sparsity to learn, but also can use what it has learnt
in the past to modify the way the spectrum is queried. We formulate
as a MAB problem the optimal selection of a compressive sensing
arm tuning the K CSS branches. To gain insight on the MAB-CSS
optimal policy, we focus on a simplified noiseless discrete sensing
model where the receiver has N sub-bands to sense overall, and as a
sensing action, it can select only K linear combinations of a subset
of them at each time slot. This means that, in principle, the cogni-
tive receiver under the MAB-CSS architecture can choose to sense
strategically a spectrum of variable size. We leave the study of noisy
observations and of a detailed MAB-FRI sampling structure as fu-
ture work.

2. PROBLEM FORMULATION

We are motivated by solving the standard problem of a CR user try-
ing to opportunistically access a wideband spectrum assigned to a
primary user (PU). The spectrum is divided into N non-overlapping
narrow-band sub-channels which are assumed to be independent and
statistically identical. In a particular geographical region and within
a particular time interval, some of the N sub-bands are idle and
available for opportunistic access. We further assume that the set
of occupied sub-bands is potentially sparse. The CR objective is to
access the empty sub-channels using a slotted transmission structure.
Each sub-channel evolves as an i.i.d., two-state discrete time Markov
chain. The state si[t] of channel i in time slot t - “idle” (empty or
state 0) and “busy” (occupied or state 1) - indicates the desirability
of transmission over that channel at that time slot. The full system
state in slot t is denoted as s[t] by collecting all N channel states,
s[t] = [s1[t], . . . , sN [t]] ∈ {0, 1}N . The state transition probabili-
ties are given by pij , i, j ∈ {0, 1}. We assume that the probability
of staying in state 0 or in state 1 is greater than that of switching,
meaning that p11 > p10 and p00 > p01.

Given the existing restriction on the number of observations (due
to K A/D converters), we choose to sense strategically a set of Lt
sub-channels in slot t where K ≤ Lt ≤ N . At the beginning of
each slot, the CR selects a subset At ⊆ N , {1, . . . , N} of the
N channels to sense and each MAB arm selects to activate a linear
combination of the frequency bands inAt, resulting in the following
noiseless observation model

θAt [t] = BAt [t]αAt [t] , (1)
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where θAt [t] is a K× 1 vector of observation gathered at the output
of the CSS sampler and the K × Lt matrix BAt [t] is the sensing
matrix. In this work, we simply consider a random sensing matrix
where any K columns of BAt are linearly independent with proba-
bility 1. The Lt × 1 vector αAt [t] represents the potentially sparse
vector containing the samples (in frequency domain) of the selected
sub-bands with nonzero elements for indices in the set {i ∈ At :
si[t] = 1}. We define sAt as the support of the vector αAt [t],
where sAt includes the entries in s[t] corresponding to the indices
in the set At. The cognitive receiver recovers the vector αAt [t] and
its support sAt (system state) based on the observation vector θAt [t]
by exploiting its sparsity.

For each channel detected to be idle, the user transmits and col-
lects one unit of reward. If none is sensed empty, the user does not
transmit on the channels, collects no reward, and waits until the next
slot to make another choice. This process repeats sequentially until
the time horizon expires. The objective is to maximize the average
reward (throughput) over a horizon of T slots by choosing strategi-
cally a sensing policy that governs channel selection in each slot.

Because K ≤ N , the full system state in slot t is not observable
and this problem falls into the general model of POMDP (Partially
Observable Markov Decision Process) [24]. It has been shown that a
sufficient statistic for optimal decision is the conditional probability
that each channel is in state 0 (idle) given all past decisions and ob-
servations. Referred to as the belief vector, this sufficient statistic is
denoted by Ω[t] , [ω1[t], . . . , ωN [t]], where ωi[t] is the conditional
probability that si[t] = 0. Given the sensing action At and the ob-
servation θAt [t] in slot t, the belief vector for slot t + 1, Ω[t + 1],
can be obtained.

In multi-channel opportunistic access, the objective is to find
a sensing policy π which specifies a sequence of functions π ,
[π1, . . . , πT ], where πt is the decision rule at time t that maps a
belief vector Ω[t] to a sensing action At ⊆ N . This is equivalent
to the stochastic optimization problem of maximizing the total ex-
pected reward over a finite horizon, i.e.

π∗ = arg max
π

Eπ

[
T∑
t=1

Rπt

(
Ω[t]

)∣∣Ω[1]

]
, (2)

whereRπt(Ω[t]) is the reward obtained under state Ω[t] when chan-
nels in the set At = πt(Ω[t]) are selected. For a given sensing pol-
icy π, the belief vectors {Ω[t]}Tt=1 form a Markov process with an
uncountable state space. The expectation in (2) is with respect to
this Markov process which determines the reward process. The vec-
tor Ω[1] is the initial belief vector and if no information about the
initial system state is available, each entry of Ω[1] can be set to the
stationary distribution ωo of the underlying Markov chain:

ωo =
p10

p01 + p10
. (3)

2.1. Identifiability of αAt [t]

Integrating CSS into MAB learning significantly enlarges both
the action space and the observation space of the learning engine.
Specifically, the subset At of channels to be sensed at each time
t is no longer limited to have a cardinality Lt = K. In fact, the
action space consists of all subsets of the entire spectrum of interest
with K ≤ Lt ≤ N . Thus, the CR dilemma is not only what bands
to explore, but also to what extent the cardinality Lt should be
chosen in time slot t so as to gather the most informative statistics
on the spectrum, while not exceeding the limits beyond which the
occupancy is no longer identifiable.

The identifiability of the channel occupancy is a direct con-
sequence of the constraints for the exact sparse support recovery.
Sparse vectors recovery methods exhibit a phase transition, that
depends on the number of active components in the vector At[t]
compared to the number of observations K. From results on com-
pressive sensing [25], it is well-known that if there is no noise, as
long as any K columns of the sub-matrix BAt are linearly indepen-
dent, any K observations θAt [t] can recover uniquely an arbitrary
K/2-sparse vector αAt [t] via an exhaustive search. Clearly, as long
as the number of active sub-bands Kα in the chosen set At satisfies
Kα < K/2, the support is recovered exactly.

This ambiguity affects our study of the MAB-CSS in two es-
sential ways: 1) In order to express the expected immediate reward
Rπt(Ω[t]), we need to explicitly know sAt , the support of the sparse
vector αAt [t], given the observation vector θAt [t]. However, due to
the ambiguity in sparse vector recovery, we cannot express all the
elements for all possible cases. In fact, the capability to uniquely
express all the elements in αAt [t], depends on the number of active
sub-bands Kα in the chosen setAt; 2) Updating the belief vector as
Ω[t + 1] , T (Ω[t]|At,θAt [t]) is not as direct. Given the sensing
action At and the observations θAt [t] in slot t, the belief vector for
slot t+1 should be obtained. In order to express ωi[t+1] for i ∈ At,
we require to have an explicit mapping from θAt [t] to sAt , which is
not straightforward due to the existing ambiguity in sparse recovery.

3. OPTIMAL POLICY AND MYOPIC POLICY

3.1. Value Function and Optimal Policy

Let Vt(Ω[t]) be the value function, which represents the max-
imum expected total reward that can be obtained starting from
slot t given the current belief vector Ω[t]. The reward that can
be accumulated starting from slot t consists of expected immedi-
ate reward E[RAt [t]] and the maximum expected future reward
Vt+1(T (Ω[t]|At,θAt [t])), given that the user takes action At and
observes θAt [t] in slot t.

Averaging over all possible observations θAt [t] and maximizing
over all actions At, we arrive at the following optimality equations

VT (Ω[T ]) = max
A

E
[
RA[T ]

]
Vt(Ω[t]) = max

A

[
E
[
RA[t]

]
+
∑
θ

p(θA[t] = θ|A)

· Vt+1

(
T (Ω[t]|A,θA[t] = θ)

)]
, (4)

where the summation is over all possibilities for the observation vec-
tor θ. In theory, the optimal policy π∗ and its performance V1(Ω[1])
can be obtained by solving the above dynamic program. Brute force,
this approach is computationally prohibitive due to the impact of the
current action on the future reward and the uncountable space of the
belief vector Ω[t] ∈ [0, 1]N , which is a vector of probabilities. It is
thus common to consider suboptimal policies that are easier to com-
pute and implement. One of the simplest such heuristics is a greedy
policy where at each time step we take an action that maximizes the
immediate one-step reward.

3.2. Myopic Policy

The myopic policy π̂ ignores the effect of the current action on the
future reward, and entirely focuses on maximizing the expected im-
mediate reward E

[
RAt [t]

]
. Myopic policies are thus stationary and

seek to maximize the reward as if there were only one step left in the
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horizon. In the following, we first express the expected immediate
reward for the MAB-CSS problem in hand and in Section 3.3, we
derive the myopic policy.

For Lt = K, assuming that BAt is full rank with probability
1, we can uniquely recover αAt [t] and its support vector sAt . As
a result, the problem becomes equivalent to the MAB problem with
K-arm selection [8]. In this case, the expected immediate reward
can be expressed as E

[
RAt [t]

]
=
∑
i∈At

ωi[t]. For Lt > K, as we
discussed in Section 2.1, we are faced with the identifiability prob-
lem in recovering αAt [t]. In this paper, we simplify this dilemma
by assuming that as long as the number of active sub-bands in the set
At is smaller than or equal to Γ , dK/2e−1 (Kα ≤ Γ), our sparse
recovery algorithm is able to uniquely recover the support vector sAt

from the observation θAt [t]. If the sparse recovery algorithm deter-
mines that Kα > Γ (failure event), the CR conservatively does not
transmit on the sub-bands sensed in At and collects no reward. In
addition, in this case, the belief vector is updated as if At was an
empty set. Under this assumption:

E
[
RAt [t]

]
=


∑
i∈At

ωi[t], |At| = K

Γ∑
k=0

(|At| − k)Pk|At , |At| > K
(5)

where Pk|At , Pr(Kα = k|At,Ω[t]) depends on the elements of
the belief vector Ω[t] with indices inAt. Thus, deriving (5) requires
deriving Ω[t]. For Lt = K, ωi[t+ 1] can be expressed as

ωi[t+ 1] =

 p10, i ∈ At, sAt(i) = 1
p00, i ∈ At, sAt(i) = 0
τ(ωi[t]), i /∈ At

(6)

where τ(ω) , ωp00 + (1 − ω)p10. For Lt > K, we can express
the belief update Ω[t+ 1] = T (Ω[t]|A,θA[t] = θ) in terms of the
recovered support vector sAt as follows

ωi[t+ 1] =


p10, i ∈ At, Kα ≤ Γ, sAt(i) = 1
p00, i ∈ At, Kα ≤ Γ, sAt(i) = 0
τ(ωi[t]), i ∈ At, Kα > Γ
τ(ωi[t]). i /∈ At

(7)

3.3. Structure of the Myopic Policy

The myopic action under belief vector Ω[t] is given by

A∗t = arg max
A

E
[
RA[t]

]
. (8)

Finding the myopic policy brute force is also a computationally in-
tensive task, since it requires the search over all possible sets with
cardinality K ≤ Lt ≤ N . In this Section, we derive the structure of
the myopic policy for the general values of K and N by solving the
optimization problem in (8).

Assume that at time t, we have the ordered belief vector as
ωn1 [t] ≥ ωn2 [t] ≥ . . . ≥ ωnN [t]. Then, for Lt = K, we have

R̃t , max
A

E
[
RA[t]

]
= max

A

∑
i∈A
|A|=K

ωi[t] =

K∑
i=1

ωni [t] , (9)

which corresponds to the set Ãt = {n1, n2, . . . , nK}. To find the
myopic policy, we need to solve the following optimization problem

for Lt > K and compare its corresponding expected immediate
reward with R̃t in (9):

Ât = arg max
A

E
[
RA[t]

]
= arg max

A

Γ∑
k=0

(Lt − k)Pk|A . (10)

In order to derive the structure of the greedy policy, we first express
the optimal set to be observed for a fixed cardinality Lt = |At|.
Then, the procedure is completed by providing conditions to deter-
mine the optimal value for Lt.

Lemma 1 For a fixed or given cardinalityK ≤ Lt ≤ N , E
[
RA[t]

]
is maximized for A = {n1, n2, . . . , nLt} which senses the Lt sub-
bands with the largest belief values from the vector Ω[t].

Proof The Lemma is certainly true for Lt = K. Let us defineA′ ,
A∪{i} for a fixed setA with cardinalityM ≥ K where i ∈ N \A.
Using the law of total probability for conditional probabilities, Pk|A′

can be expressed as

Pk|A′ =

{
ωi[t]Pk|A , k = 0
(1− ωi[t])Pk−1|A + ωi[t]Pk|A . 1 ≤ k ≤ Γ

(11)
Using (11) in (5), after some mathematical simplifications, leads to
the following expression

E
[
RA′

]
= GA+ωi[t](TA+(M−Γ)PΓ|A)−(M−Γ)PΓ|A , (12)

where GA ,
∑Γ
k=0(Lt − k)Pk|A and TA ,

∑Γ
k=0 Pk|A. Since,

TA+(M−Γ)PΓ|A > 0 and the termsGA, TA+(M−Γ)PΓ|A and
(M − Γ)PΓ|A do not depend on ωi[t], we can conclude that when
A is fixed, E

[
RA′

]
is maximized when i is switched with

i∗ , arg max
k∈N\A

ωk[t] . (13)

This implies that E
[
RA′

]
can be further increased by sequentially

switching the elements in A′ with the elements in N \ A′ with
higher belief values. This establishes that E

[
RA′

]
is maximized

with respect to all the entries in A′, when no switching is possible
and A′ = {n1, . . . , nM+1} which completes the proof.

A direct consequence of Lemma 1 is that the optimization in (10)
overA reduces to the maximization over the cardinality of the setA
for K + 1 ≤ Lt ≤ N :

L̂t = arg max
M

E
[
RBM [t]

]
= arg max

M

Γ∑
k=0

(M − k)Pk|BM ,

(14)
where BM , {n1, n2, . . . , nM} and Ât = {n1, . . . , nL̂t

}. As a
result, at time slot t, the search space is reduced significantly toN −
K + 1 sets. The CR still needs to compute E

[
RBM [t]

]
for K + 1 ≤

M ≤ N and compare their maximum E
[
RÂt

[t]
]

with R̃t which is
the expected immediate reward forLt = K. This procedure requires
the explicit computation of the probabilities Pk|BM for 0 ≤ k ≤ Γ,
K ≤ M ≤ N which may be computationally expensive since the
number of active sub-bands is a Poisson binomial random variable.
In the following Remark, a simple procedure is proposed to generate
the probabilities Pk|BM recursively.

Remark 1 At time slot t, based on the belief vector Ω[t], the CR
only evaluates the probabilities Pk|BK , 0 ≤ k ≤ Γ using the recur-
sive formula [26] for computing the probabilities in Poisson bino-
mial distribution. Then, the probabilities Pk|BM ,K+1 ≤M ≤ N ,
are calculated sequentially according to the expressions in (11) re-
placing i with nM , A with BM−1 and A′ with BM .
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To further reduce the complexity of the process of finding the opti-
mal Lt, we propose a suboptimal variant of the introduced myopic
policy. The following Lemma establishes the idea that motivates the
simplified and sequential procedure.

Lemma 2 E
[
RBM+1

]
≥ E

[
RBM

]
under a threshold policy

ωnM+1 [t] ≥ ηM , where the threshold is defined as

ηM ,


R̃t −GBK + (K − Γ)PΓ|BK

TBK + (K − Γ)PΓ|BK
, M = K

(M − Γ)PΓ|BM
TBM + (M − Γ)PΓ|BM

. M ≥ K + 1

(15)

Proof The proof directly follows by replacing iwith nM+1,A′ with
BM+1 and A with BM in (12).

To find the optimal Lt, the CR first orders the belief vector and
using the ordered beliefs computes R̃t and Pk|BK , 0 ≤ k ≤ Γ.
Afterwards, inspired by Lemma 2, the CR sequentially compares
ωnM+1 [t], K ≤ M ≤ N − 1 with the threshold ηM defind in
(15) to decide whether to increase Lt or not. The first time that
this condition is not satisfied, the CR stops and selects the current
value of M as the optimal value of Lt1. To compute the thresh-
old ηM , the CR only needs to evaluate TBM and PΓ|BM . How-
ever, using (11), we can easily discover the sequential update for-
mulas as TBM+1 = TBM − (1−ωnM+1 [t])PΓ|BM and PΓ|BM+1

=
(1−ωnM+1 [t])PΓ−1|BM +ωnM+1 [t]PΓ|BM which reduces the com-
putational burden of evaluating ηM .

4. NUMERICAL EXPERIMENTS

In this Section, we evaluate numerically the performance of the
greedy approach for MAB-CSS architecture and specifically com-
pare it with the myopic policy for the K-arm selection problem [8]
where the CR selects exactly K out of the N sub-channels to sense
at each time slot t. In [8], the authors have shown that for K-arm
selection problem, the myopic policy is optimal when p00 ≥ p10.

In the numerical experiments, we assume T = 30 and the num-
ber of arms is equal to K = 2 and 4. We consider N independent
sub-channels with the same transition probabilities and bandwidth
B = 1. In the simulations, the value of N is set to vary from 4 to
20 and we compute the normalized expected total reward achieved
over 500 simulation trials. For better comparison and visualization
reasons, the results are normalized by T to reflect the throughput
per slot. We consider two scenarios for the transition probabilities
to capture the sparsity in spectrum occupancy and study the effect
of the sparse channel occupancy on the performance of MAB-CSS.
In Case 1, we set the transition probabilities as p10 = 0.42 and
p00 = 0.82, which in the steady state corresponds to spectrum oc-
cupancy rate of 30%. In Case 2, we investigate a sparser scenario
with transition probabilities p10 = 0.4 and p00 = 0.9, which in the
steady state corresponds to channel occupancy rate of 20%.

In Fig. 1(a), the performance of MAB-CSS andK-arm selection
are presented forK = 2, 4 in Case 1. The greedy approach in MAB-
CSS outperforms the myopic policy inK-arm selection for all values
of N and for both K = 2 and 4. Fig. 1(b) shows the performance
comparison for Case 2. In this case, with sparser channel occupancy,
the performance improvement is more significant. We also observe

1We have experimentally observed that this procedure leads to the optimal
selection of Lt. Since, we do not have a proof, we refer to this approach as a
“suboptimal” version of the myopic policy.

that myopic MAB-CSS with K = 2 outperforms K-arm selection
with 4 arms when N ≥ 6. The experiments showcase the capability
of MAB-CSS architecture to improve the expected total throughput
when the channel occupancy is sparse. Evidently, the myopic policy
in MAB-CSS problem requires more processing and is more com-
putationally extensive. However, our experiments demonstrate that
in sparse enough settings (e.g. Case 2), it can double the expected
throughput which is a considerable enhancement.
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(a) Case 1: p10 = 0.42 and p00 = 0.82
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Fig. 1. Performance comparison of the myopic MAB-CSS with K-
arm selection.

5. CONCLUSION

In this paper, we combined the perspective of MAB with FRI sam-
pling structure. We specifically formulated the selection of a com-
pressive sensing arm with K branches as a MAB problem. We as-
sumed that when the number of active sub-bands in the selected sub-
set to sense is limited by K/2, the states of the sensed sub-channels
are perfectly identifiable. For the complexity reduced and noiseless
MAB-CSS problem we considered in this work, the myopic policy
was established and investigated numerically. The numerical exper-
iments demonstrate that in finite horizon setting and when the chan-
nel occupancy is sparse, exploiting sparsity in MAB-CSS problem
improves the expected total reward.
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