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ABSTRACT

In a network, each agent communicates with its neighbors. All the
agents have initial observations, and they update their beliefs with
the average of the beliefs in their neighborhoods. It is well known
that in the long run, the network will reach consensus. However, the
agents do not necessarily converge to the global average of the initial
observations of all the agents in the network. Instead, the result is
always a weighted average. Moreover, it takes infinite time for the
process to converge. In this paper, we address regular networks of
agents, where each agent (node) has the same number of agents. We
propose a method that allows agents in these networks to learn the
global average using the history of its local average in finite time.

Index Terms— Consensus, efficient learning, learning in agent
networks, regular graphs.

1. INTRODUCTION

We have a network of N agents, where agent n has an initial
observation sn. The agents form a regular network, that is, each
agent in the network has the same number of neighbors. We are
interested in how an agent can learn the global average of the initial
observations, i.e., 1

N

∑N
n=1 sn. Without a control center, this is not

an easy task. If each agent updates its belief with the local average
of its neighborhood at each iteration, its belief will not necessarily
converge to the global average of the initial observations, although
consensus is guaranteed [1, 2]. Alternatively, with the knowledge
of the network topology, it is possible to design a set of weighting
coefficients for each agent to compute the local weighted average so
that all the agents converge to the global average in the long run
as discussed in [3]. The drawbacks with this method is that the
topology of the network must be known to each agent, and it takes
infinite time to converge to the exact global average.

In this work, we propose a learning method that allows each
agent to learn the global average within 2N iterations. Specifically,
at each iteration, agents compute their local average in their
neighborhood and keep a record of the local averages. After 2N
iterations, the agents can use the relation between the local averages
in the sequence to infer the structure of the network and recover the
global average. We prove that the proposed algorithm is guaranteed
to recover the global average for all regular graphs.

There is some related work in the literature. In [4] and [5],
the focus is on the rate of convergence: the former tries to find the
mixing matrix that leads to the highest convergence rate; the latter
looks for the structure that accelerates the convergence. An optimal
control scheme for achieving consensus is proposed in [6]. In [7], it
is shown that an agent in a network is able to calculate any functions
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of the initial observations of all the agents by using any constant
weights for the local computation given that some parameters are
pre-set based on the network structure. In [8], the authors proposed
an efficient learning algorithm which enables agents to learn the
global average in finite time for any graphs. The algorithm, however,
requires complete information of the topology of the graph. In [9],
the authors consider the problem of designing a sequence of mixing
matrices such that the agents learn the global average in minimum
time. By contrast, in our work we assume that the structure and the
mixing matrix are given. We focus on how and what an agent can
learn in the given setting. In other words, we consider the learning
from the perspective of agents.

The notation in the paper is as follows: We denote matrices
by uppercase letters in bold font; scalars by plain letters; vectors
by lowercase letters in bold font; all vector variables are column
vectors; A = (ai,j) means that we denote by aij the entry of the
ith row and jth column of the matrix A; (·)> indicates the transpose
operator; I is the identity matrix.

The paper is organized as follows. We formulate the problem
in Section 2, and present the proposed method in Section 3. In
Section 4, we provide a simple example to illustrate how the method
works. In Section 5, we show that for regular networks the proposed
method is guaranteed to work and how the steps of learning can be
simplified. We conclude the paper with Section 6.

2. PROBLEM FORMULATION

Suppose we have a graph G = (V, E), where V represents the set
of nodes, or agents, and |V| = N . The symbol E denotes the set of
edges. Two agents may communicate with each other if there is an
edge between them. There is a true state µ0. At the beginning, each
agent receives an observation, which is a normal random variable
with mean µ0 and unit variance. Suppose that agent n observes sn.
Our objective is to estimate the true state µ0 in a distributed way.
Apparently, in this case, the efficient estimator is the global average:

µ̂0 =
1

N

N∑
n=1

sn. (1)

Therefore our objective is to achieve (1) through belief propagation
among the agents. Note that the consensus algorithm does not lead to
(1) for general graphs since the mixing matrices are not necessarily
doubly stochastic matrices. We put our effort on the inference of
the structure and the recovery of the global average within finite
time. Here are our basic assumptions: (1) at every iteration, each
agent broadcasts its state to its neighbors; (2) after broadcasting,
each agent updates its state by taking the average of the information
it received from its neighbors; (3) the topology of the network is
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a fixed undirected connected graph; (4) each agent knows the total
number of agents in the network.

The adjacency matrix A = (ai,j) is defined as

ai,j =

{
1 (i, j) ∈ E
0 otherwise

. (2)

We can define a stochastic matrix B = (bi,j) whose elements are
given by

bi,j =


ai,j
di + 1

i 6= j

1

di + 1
i = j

, (3)

where di is the degree of node i. We denote by xn,t the value agent
n has after t iterations. At the beginning, the state of each agent
is sn. Thus xn,1 = sn. At each iteration, every agent performs a
consensus step as follows:

xn,t =
1

dn + 1

xn,t−1 +
∑

(n,j)∈E

xj,t−1

 . (4)

Let x (t) = [x1,t, · · · , xN,t]
>, s = [s1, · · · , sN ]>. It is not difficult

to see that

x (t) = Bt−1s. (5)

We consider the problem from the perspective of an agent,
say agent n. Our problem becomes that given xn,t for t ∈
{1, 2, · · · , T}, we would like to find the global average µ̂0. Later
we will see that we require at most 2N records of local averages.
In other words, xn,t for t > 2N does not provide additional
information about µ̂0. Let xn,T = [xn,1, · · · , xn,T ]

>. Let cn,t

be the nth row of Bt−1. Although ct comes from a row of a
matrix, we still define it as a column vector for the sake of notational
consistency. We define Cn,T as

Cn,T =


c>n,1

c>n,2

...
c>n,T

 . (6)

Then we have

xn,T = Cn,T s. (7)

Since Cn,T has only N columns, rank (Cn,T ) ≤ N . Cn,T has an
important property:

Lemma 1. Suppose rank (Cn,T ) = K, and let α =

[α1, · · · , αN ]> be the vector such that

α>Cn,K =c>n,K+1. (8)

Then we have

α>


c>n,m

c>n,m+1

...
c>n,m+K−1

 =c>n,m+K . (9)

The lemma can be easily proved if we notice that c>n,m+1 =

c>n,mB. This property guarantees that the first K rows or more
generally every K consecutive rows of Cn,T is a maximal linearly
independent set of rows for Cn,T . Our main result is as follows.

Theorem 1. In a network with topology being a regular graph, given
the consensus information received within 2N iterations, an agent is
able to compute 1

N

∑N
n=1 sn accurately with probability 1.

3. THE PROPOSED ALGORITHM

In this section, we introduce our proposed learning algorithm.
We defer the analysis and discussion to Section 5. During the
consensus procedure, agent n records a sequence of local averages,
say xn,1, xn,2, ... To simplify the notation, we denote xn,t by xt.
Given the sequence, define a matrix Xk as

Xk =


x1 x2 · · · xk
x2 x3 · · · xk+1

...
...

. . .
...

xk xk+1 · · · x2k−1

 , (10)

for k = 1, 2, · · · , T . Note that XN does not need to be of full
rank. If XN has rank K, then XK must be a full rank matrix due to
Lemma 1. Then let α be

α = X−1
K

xK+1

...
x2K

 . (11)

Let all connected graphs with N nodes be our candidate graphs. We
then apply brute-force search and check these candidates one by one,
looking for the graph that best fits the sequence of local averages.
Because a different node in a graph sees different topologies, we
need to check the record with every node in every candidate graph.
Specifically, given a graph H and its node n, we use the consensus
matrix defined by H to construct Cn,N as defined in (6). We first
compare the ranks. If the rank of Cn,N is not equal toK, we discard
this case and continue to the next candidate node in H. If they are
equal, we then check whether α>Cn,K = c>n,K+1. If it holds, we
conclude that the network of the agent has a topology as graph H.
Because the objective is to find 1

N

∑N
j=1 sj , we look for a set of

weighting coefficients βj that makes

∑
j

βjxj =
1

N

N∑
j=1

sj . (12)

Note that for an arbitrary graph, it is not always possible to find
βj that makes (12) hold. But in such case, we can instead find
the coefficients that make the estimate µ̂0 with minimum variance.
Before we start to prove our theorem, we provide a simple but
illustrative example.

4. AN EXAMPLE

We start with a simple example. Suppose there are only four nodes in
a graph. The number of unlabeled connected graphs with four nodes
is 6 [10], and they are shown in Fig. 1. Suppose that the actual graph
is (c) and it is labeled as shown in Fig. 2. Now, given a sequence of
observations x1, x2, · · · , x8, we construct XK for K = 1, 2, 3 and
4. Then, (with probability 1) we will have the following:
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(a)

(e)(d)

(b) (c)

(f)

Fig. 1. All the connected graphs with four nodes.

3

1 2

4

Fig. 2. The actual graph with labeled nodes.

For agent 1, rank (XK) = 2, α =
[
1
4
, 3
4

]>. We check whether
αCn,2 = c>n,3 for n = 1, 2, 3 and 4, and for all different Cn,T of
the six graphs. In this case, the only possible case is graph (c) with
n = 1.

For agents 2, 3 and 4, rank (XK) = 3, α =
[
− 1

8
,− 1

8
, 5
4

]>.
Similarly we check whether αCn,3 = c>n,4 for n = 1, 2, 3 and
4, and for all different Cn,T of the six graphs. The possible cases
are graph (c) with n = 2, 3 and 4. Note that agents {2, 3, 4} are
equivalent, i.e., there exists an automorphism [11] of the graph which
maps i to j for i, j ∈ {2, 3, 4}. Intuitively speaking, these agents
see the same structure. Therefore there is no way and no need to
distinguish agents 2, 3 and 4.

Next we would like to recover the average. We shall find a set
of coefficients β1, β2, β3 and β4 such that

∑4
i=1 xiβi is the average.

For node 1, C1,4 is

C1,4 =


1 0 0 0
1
4

1
4

1
4

1
4

7
16

3
16

3
16

3
16

25
64

13
64

13
64

13
64

 , (13)

and we can see that β = [0, 1, 0, 0]> satisfies β>C = 1>. For
i = 2, 3 and 4, Ci,4 is

Ci,4 =


1 0 0 0
1
2

1
2

0 0
3
8

3
8

1
8

1
8

13
32

9
32

5
32

5
32

 . (14)

The order of the columns might change for different i. A possible
solution is β = [0,−4, 8, 0]>. We note that, in general, there might
be multiple solutions; there also might be no solutions.

As shown in the example, the proposed method has the
following steps: we first use the observations to construct XK , and
compute α. We then calculate the roots of the polynomial defined
by α. We assume those roots are the eigenvalues of the graph. Then
we try to use the eigenvalues to find the topology of the graph. As
long as the topology is known, the consensus matrix can be derived.
Then we look for a set of weighting coefficients to combine the
observations and achieve the global average. We note that for general
graphs, the method does not always work. First, the roots of the
polynomial defined by α are not necessarily the eigenvalues of the
graph. Second, the topology of a graph is not necessarily defined by
the eigenvalues. Third, even if the structure is known exactly, a set
of weighting coefficients that satisfy (12) does not necessarily exist.

5. RECOVERY OF GLOBAL AVERAGE

In this section, we show that the proposed algorithm achieves the
objective if the network is a regular graph. For regular graphs,
the easy part is that the consensus matrices become symmetric and
doubly stochastic. Those matrices enjoy some nice properties that
make them easy to analyze.

Given xn,T , we construct Xk as in (10) and find the maximum
rank K. Then we calculate the vector α according to (11). Note
that α is all we need to recover the global average. According to the
definition of α, we haveXK

xn,K+1

...
xn,2K


[ α−1

]
=0. (15)

We only look at xn,1, · · · , xn,K+1:

[
α> −1

]  xn,1

...
xn,K+1

 =0. (16)

Because xn,t = c>n,ts, (16) becomes[
α> −1

]
Cn,K+1s = 0, (17)

and it is likely that [
α> −1

]
Cn,K+1 =0. (18)

This is not absolutely guaranteed because s, as a random vector,
might be orthogonal to one of the rows of Cn,T . If this is the case,
it means that s falls in a proper subspace of RN , which can happen
with only probability zero. That is why we claim that our algorithm
achieves the objective with probability 1.

Next, we show that α in (18) provides information about the
eigenvalues of the matrix B. The underlying principle is closely
related to Cayley−Hamilton theorem [12]. In fact, we have the
following lemma:

Lemma 2. The roots of the polynomial

λK − αKλ
K−1 · · · − α2λ− α1 = 0 (19)

are the eigenvalues of B.
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Proof : Define a matrix M as

M =α1I + α2B + · · ·+ αKBK−1 −BK . (20)

Note that (18) tells us that the nth row of M is zero. Because we
only consider regular graphs, B is symmetric. We can decompose
B as

B =UΛU>, (21)

where U = (uij) is an orthonormal matrix with the columns being
the eigenvectors of B, and Λ is a diagonal matrix with the diagonal
entries being the eigenvalues. We substitute (21) into (20), and we
obtain

M =U

(
K∑

j=1

αjΛ
j−1 −ΛK

)
U>. (22)

Define V =
∑K

j=1 αjΛ
j−1 − ΛK , where V is a diagonal matrix

with diagonal entry vi for i ∈ {1, · · · , N}. Since the nth row of M
is zero, we have [

un1 · · · unN

]
VU> =0>. (23)

As an eigenspace of a symmetric matrix, U is full rank. Therefore
we have [

un1 · · · unN

]
V =0>. (24)

Consequently, uni = 0, or vi = 0, or both of them are equal to zero.
To make (23) hold, vi must be zero for those i where uni 6= 0. If
uni = 0, vi is not required to be zero. Since each zero vi specifies an
equation of an eigenvalue, we say λi is blotted out if uni = 0. Those
eigenvalues that have not been blotted out are said to be visible. Then
we must have K visible eigenvalues. To see this, if the number of
visible eigenvalues is smaller than K, there must exist a smaller
integer, say K2 that satisfies (23), which leads to a contradiction
because K is the largest integer that makes XK full rank. Suppose
vi = 0 for i ∈ {i1, · · · , iK}. Then the set of equations specified by
zero vi is

K∑
j=1

αjλ
j−1
ik

=λK
ik for k = 1, · · · ,K. (25)

We rewrite them into a matrix form and have
1 λ1 · · · λK−1

1

1 λ2 · · · λK−1
2

...
...

. . .
...

1 λN · · · λK−1
N



α1

α2

...
αK

 =


λK
1

λK
2

...
λK
N

 . (26)

If all the eigenvalues are visible, it is clear that the value ofK should
be equal to the order of the minimal polynomial of B. Also since B
diagonalizable, K is equal to the number of distinct eigenvalues of
B [13]. However, if some eigenvalues are blotted out, K will be
smaller than the order of the minimal polynomial. But {λik}

K
k=1

are always distinct eigenvalues. Therefore the matrix on the left side
must be full rank. Thus, {λik}

K
k=1 are uniquely defined by α. This

completes the proof. �
To recover the global average, we look for a vector β =

[β1, · · · , βN ] that makes

β>Cn,K =1>, (27)

which is equivalent to

[
un1 · · · unN

]( K∑
j=1

βjΛ
j−1

)
U> =1>. (28)

We will show that β is uniquely determined by {λik}
K
k=1. Define a

diagonal matrix R to be

R =

K∑
j=1

βjΛ
j−1. (29)

We move U> in (28) to the right side, and also notice that for
symmetric matrices, the eigenvectors are orthogonal to each other.
Moreover, B is a doubly stochastic matrix. The vector 1√

N
1

is always an eigenvector for a doubly stochastic matrix and the
corresponding eigenvalue is 1. Suppose the last column of U is 1.
Thus we have[

un1 · · · unN

]
R =

[
0 · · · 0

√
N
]
. (30)

Suppose ri is the ith diagonal entry of R. We can ignore those ris if
uni = 0 for i ∈ {1, · · · , N}. As a result, we can setup the following
equations:

K∑
j=1

βjλ
j−1
ik

=

{
0 if λik 6= 1

N if λik = 1.
(31)

It is clear that the solution exists for the equations. The key fact is
that the unknown eigenvalues, which are blotted out by zero entries
in the eigenvectors, will still be blotted out in (30), and β is uniquely
determined by {λi|uni 6= 0}; therefore, it is uniquely determined by
α. Theorem 1 is proved.

To sum up, for regular graphs, the method can be simplified.
We first find α and calculate the corresponding roots λi. We
then find β according to (31). Finally [x1, · · · , xK ]β would be
the global average. We point out that for regular graphs, the
agents need not know any information about the graphs. All they
need to recover the global average is the sequence of observations
xn,1, xn,2, · · · , xn,2K .

6. DISCUSSION AND CONCLUSION

In this work, we proposed an algorithm which enables an agent in
a network to learn the global average through a sequence of local
consensus in finite time. We proved that this algorithm always works
for regular graphs.

For non-regular graphs, it may or may not work. Whether it
works only depends on the structure of the graph. It would be
interesting and challenging to find out the exact class of graphs for
which this algorithm is guaranteed to work. To learn the global
average, the agents need to know the number of total agents in the
network. Besides, the agents must compare the sequence of local
averages with all the graphs with N nodes to find out which graph
is consistent with the sequence. The computational complexity is
prohibitive for large N .

For regular graphs, it is surprising that the agents are not
required to have any information. They do not even need to know the
total number of agents, and as stated in Section 5, with the proposed
method it is guaranteed that they can recover the global average.
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