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ABSTRACT

The introduction of data reuse in the incremental topology made it
possible for combinations of LMS filters to outperform algorithms
such as the Affine Projection Algorithm (APA) with lower complex-
ity. This work poses and extends the concept of combinations as a
complexity reduction technique by proposing an incremental combi-
nation of sign-error LMS filters that matches and even outperforms
stand-alone LMS filters with reduced complexity. This combination
is then analyzed and used as a building block in a larger combina-
tion that is able to match the APA at a reduced computational cost.
Numerical simulations illustrate the performance of this novel com-
bination in different scenarios.

Index Terms— Adaptive filtering, Combination of adaptive fil-
ters, Data reuse incremental combinations, Affine Projection Algo-
rithm, Sign-error LMS

1. INTRODUCTION

Combinations of adaptive filters (AFs) have become an established
technique to improve the performance of adaptive algorithms [1–9].
It consists of mixing a pool of AFs—the components—so that the
overall system is at least as good—usually in the mean-square er-
ror (MSE) sense—as the best filter in the set. It has been used to
reduce transient/steady-state trade-offs [2,4,6,7] and improve track-
ing [3, 9] and prediction [1, 5] in different scenarios. Though effec-
tive, combinations imply an increase in complexity, as several AFs
must be evaluated at each iteration. A combination usually has the
computational complexity of the sum of its components, although it
can be reduced in some special cases [10–13].

Recently, a different view of combinations was put forward with
the development of data reusing (DR) incremental structures. In this
approach, combinations are used to create algorithms with the same
performance as more powerful—and complex—AFs but with lower
computational complexity. For instance, combinations of LMS fil-
ters have been shown to match and outperform the Affine Projection
Algorithm (APA) with up to ten times less operations. Furthermore,
it bridged the gap between DR adaptive algorithms [14–17] and com-
binations of AFs [8, 18].

This work explores and extends this novel concept of combi-
nations as a complexity-reduction technique by (i) introducing an
incremental combination of sign-error LMS filters that matches the
performance of the LMS with less multiplications; (ii) showing that
the resulting {sign-error LMS}N asymptotically approaches the
NLMS recursion1; (iii) designing the components so as to minimize

1In our notation, LMS · LMS · · ·LMS = {LMS}N represents an incre-
mental combination of N LMS filters [18].

their number; and (iv) using the {sign-error LMS}N as building
blocks in combinations that may outperform the APA.

2. INCREMENTAL COMBINATIONS

2.1. Adaptive filtering

In a system identification scenario, an AF operates over the data pair
{ui, d(i)}, where ui is a 1×M regressor vector that captures sam-
ples u(i) of a real-valued zero mean input signal with variance σ2

u

and d(i) = uiw
o + v(i) is a measurement of the output of an un-

known system modeled by the M × 1 vector wo. This measurement
is corrupted by a noise v(i), modeled as a zero mean i.i.d. real Gaus-
sian random variable with variance σ2

v . At iteration i, the adaptive
algorithm updates a previous estimate wi−1 of wo by

wi = wi−1 + µp, (1)

using a step size µ and an update direction p = −B∇TJ(wi−1),
withB a positive-definite matrix, J(wi−1) the underlying cost func-
tion of the AF, and T denoting the transpose operation. Usually,
AFs attempt to minimize the MSE: J(wi−1) = E e2(i), where
e(i) = d(i)− uiwi−1 is the output estimation error [19].

Different choices for p lead to different algorithms, such as the
ones presented below in increasing order of complexity:

wi = wi−1 + µuT
i sign[e(i)] (sign-error LMS) (2a)

wi = wi−1 + µuT
i e(i) (LMS) (2b)

wi = wi−1 +
µ

‖ui‖2 + ε
uT
i e(i) (NLMS) (2c)

wi = wi−1 + µUT
i (UiU

T
i + εI)−1 ei, (APA) (2d)

where sign[·] is the signum operator—i.e., sign[a] = 1, for a > 0;
sign[a] = −1, for a < 0; and sign[a] = 0, for a = 0—and ε � 1
is a regularization factor [19, 20]. The APA operates over the larger
data set Ui = [ uT

i · · · uT
i−K+1 ]T , a K ×M regressors ma-

trix, and di = [ d(i) · · · d(i−K + 1) ]T , a K × 1 measure-
ments vector, so that ei = di −Uiwi−1. It is presented in (2d) in its
standard form, though less complex recursions exist [21].

2.2. Data reusing incremental combinations

Initially, incremental combinations were proposed as a solution to
the convergence stagnation issue of the parallel-independent struc-
ture [7]. Since then, they have been shown to improve the overall
performance of the resulting algorithms [9, 18, 22], even more so
when the DR techniques introduced in [8] are used.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7298



DR usually involves either using a same data pair {ui, d(i)} sev-
eral times or operating over a set of data pairs {Ui, di}. A DR incre-
mental combination of N LMS filters is then defined as

w0,i = wi−1

wn,i = wn−1,i + ηn(i)µnu
T
n,ien(i)

wi = wN,i,

(3)

where the component filters are indexed by n = 1, . . . , N . Hence,
for the n-th component, µn is the step size, en(i) = dn(i) −
un,iwn−1,i, ηn(i) represents the effect of the supervisor, and
{un,i, dn(i)} accounts for different DR strategies [8]. The com-
bination outputs the global coefficients wi, which yields the global
output estimation error e(i) = d(i)− uiwi−1 [7–9].

Most combinations [2–7, 9] employ data sharing, a scheme in
which {un,i, dn(i)} = {ui, d(i)}. Alternatively, a data buffering
method where {un,i, dn(i)} = {ui−k, d(i − k)}, with k = (n −
1) mod K, can be used [8, 18], so that the components go over the
data set {Ui, di} as many times as required. Notice that several DR
AFs can be recovered as special cases of (3)—such as the DR-LMS
filters from [14–16] for N = K, ηn = 1, and µn = µ.

3. “THERE’S PLENTY OF ROOM AT THE BOTTOM”

Modern adaptive filtering applications [5, 23–25], such as telecom-
munication and speech echo cancellation, simultaneously require
good performance and high throughput—i.e., low complexity al-
gorithms. However, performance and complexity are usually com-
peting objectives: using AFs like the APA generally yields better
convergence and misadjustment than an LMS filter but also entails
more computation [19,20]. Moreover, developers have been migrat-
ing from DSPs to dedicated processor solutions—FPGAs—, where
multiply-and-accumulate (MAC) operations are costly and may not
be readily available [25]. In this context, several solutions have been
proposed to reduce the complexity of high performance AFs and
conform their recursions for FPGA implementation, such as dichoto-
mous coordinate descent (DCD) iterations [26, 27].

More recently, a different approach was introduced in [8, 18]
with the development of low complexity data buffering incremen-
tal combinations of LMS filters that match—and even outperform—
the APA in (2d) [19, 20]. These results gave rise to the counter-
intuitive concept of combinations as a complexity-reduction tech-
nique. Now, Mr. Feynman might ask whether there is still room
at the bottom [28]. Are LMS filters the smallest quanta of adaptiv-
ity? Would it be possible to combine smaller particles and reduce
complexity without compromising performance?

3.1. Incremental combinations of sign-error LMS filters

The sign-error LMS in (2a) was an early solution to the complexity
problem: choosing µ as a power of two replaces all multiplications—
except for those involved in the filtering y(i) = uiwi−1—by simple
bit shifts [19, 20, 29]. This AF, however, presents slow convergence
speed—see Fig. 1—and bias issues: the mean coefficients error only
converges to a ball around wo with radius proportional to the step
size as opposed to the LMS, which is unbiased [19, 20, 29].

Motivated by the convergence improvements enabled by the
incremental topology [18, 22], an incremental—data sharing—
combination of sign-error LMS filters is proposed. Explicitly,

w0,i = wi−1

wn,i = wn−1,i + µn u
T
i sign[en(i)]

wi = wN,i,

(4)

Algorithm 1 The {sign-error LMS}N

‖ui‖2 = ‖ui−1‖2 − |u(i−M)|2 + |u(i)|2 . (1)×
y(i) = uiwi−1 ; e1(i) = d(i)− y(i) . (M)×
w0,i = wi−1

for n = 1, . . . , N
wn,i = wn−1,i + µn u

T
i sign[en(i)]

en+1(i) = en(i)− µn‖ui‖2 sign[en(i)]
end
wi = wN,i
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Fig. 1. White stationary simulations with fixed point quantiza-
tion (16 bits). sign-error LMS: µ = 0.004; LMS: µ = 0.083;
and {sign-error LMS}N : N = 9 and µn = 2−3−n.

for en(i) = d(i) − uiwn−1,i and µn a power-of-two factor. Note
that this combination is unsupervised, i.e., ηn(i) = 1. In its current
form, (4) requires NM multiplications. However, if ui has shift
structure—transversal filter—this combination can be implemented
efficiently. Developing the (n+ 1)-th component error

en+1(i) = d(i)− uiwn,i

= d(i)− ui

{
wn−1,i + µn u

T
i sign[en(i)]

}
= en(i)− µn‖ui‖2 sign[en(i)] (5)

where due to the shift structure of ui, one has ‖ui‖2 = ‖ui−1‖2 −
|u(i−M)|2 + |u(i)|2, which only requires 1 multiplication given
that all |u(j)|2, for j < i, are available from previous iterations.

This efficient implementation is summarized in Algorithm 1 and
only requires M + 1 multiplications. Notice that this number does
not depend on N , the number of component filters. Alternatively,
the filtering process in y(i) could be implemented using distributed
arithmetic (DA) [25,30,31], so that only one multiplication remains.
Despite its lower complexity, this combination is indeed able to
achieve the performance of an LMS filter, as shown in Fig. 1.

3.2. {sign-error LMS}N as an efficient NLMS

A complete analysis of the combination in (4) is available, but
lengthy. In the sequel, a simpler version is presented with enough
to suggest that its improved performance comes from the fact that it
approaches an NLMS recursion.

A global coefficients recursion of the {sign-error LMS}N can
be derived from (4) by grouping the equations into

wi = wi−1 + uT
i

N∑
n=1

µn sign[en(i)]. (6)

This relation can be put in a more convenient form by finding a re-
cursion for sign[en(i)]. Indeed, taking the sign of (5) and noticing
that en−1(i) = |en−1(i)| sign[en−1(i)] yields

sign[en(i)] = sign[en−1(i)] sign
[
|en−1(i)| − µn−1 ‖ui‖2

]
,
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which can be iterated to arrive at

sign[en(i)] = sign[e(i)]

n−1∏
k=1

sign
[
|ek(i)| − µk ‖ui‖2

]
. (7)

Equation (7) can be used in (6) to get

wi = wi−1 + µ̄(i)uT
i sign[e(i)] (8a)

µ̄(i) = µ1 +

N∑
n=2

rn(i)µn, (8b)

where rn(i) =
∏n−1

k=1 Sk(i) and Sk(i) = sign
[
|ek(i)| − µk‖ui‖2

]
.

The overall recursion (8a) has the form of a sign-error LMS with
a variable step size (VSS) µ̄(i). Thus, it is subject to the same con-
vergence condition as any sign-error LMS filters [19, 20, 29]

‖w̃i‖2 ≤ ‖w̃i−1‖2 ⇔ |e(i)| ≥ µ̄(i) ‖ui‖2, (9)

where w̃i = wo − wi is the coefficients error vector. This condition
can be enforced choosing, for some α ∈ (0, 1],

µ̄o(i) = α
|e(i)|
‖ui‖2

. (10)

Substituting (10) into (8a) leads to

wi = wi−1 + α
|e(i)|
‖ui‖2

uT
i sign[e(i)] = wi−1 +

α

‖ui‖2
uT
i e(i),

(11)
which is the recursion of an NLMS with ε = 0 and µ = α. Hence,
the VSS sign-error LMS in (8a) becomes an NLMS for µ̄(i) =
µ̄o(i), which is implicitly imposed by the combination.

3.3. Successive approximations of the overall step size

Since the {sign-error LMS}N is equivalent to the VSS sign-error
LMS in (8), showing that the {sign-error LMS}N→ NLMS requires
only that one demonstrates that, for µ̄(i) as in (8b),

|µ̄(i)− µ̄o(i)| → 0, N → +∞. (12)

To do so, assume, without loss of generality, that α = 1. Then,
substituting (8b) and (10) in (12) yields

1

‖ui‖2

∣∣∣∣∣µ1‖ui‖2 +

N∑
n=2

rn(i)µn‖ui‖2 − |e(i)|

∣∣∣∣∣ . (13)

For ‖ui‖2 6= 0, suffices to show that the absolute value in (13) goes
to zero. To derive a recursion for it, define r1(i) = 1 and note that
e(i) = e1(i) so that for any k the absolute value in (13) has the form∣∣∣∣∣µk‖ui‖2 + rk(i)

[
N∑

n=k+1

rn(i)µn‖ui‖2
]
− |ek(i)|

∣∣∣∣∣ ,
which is equivalent to∣∣∣∣∣rk(i)

[
N∑

n=k+1

rn(i)µn‖ui‖2
]
−
[
|ek(i)| − µk‖ui‖2

]∣∣∣∣∣ . (14)

Noticing from (5) that |ek+1(i)| =
[
|ek(i)| − µk ‖ui‖2

]
·Sk(i) and

multiplying (14) by |Sk(i)| = 1, it can be rearranged to read∣∣∣∣∣Sk(i)rk(i)

[
N∑

n=k+1

rn(i)µn‖ui‖2
]
− |ek+1(i)|

∣∣∣∣∣ (15)
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0
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Fig. 2. Evolution of a realization of µ̄(i) and |en(i)| during one iter-
ation i: M = 10, N = 16, and µn = 2−4−n (MATLAB precision).
|en(i)| is normalized by ‖ui‖2 to remain within the range of the plot.

Given that rk+1(i) = Sk(i)rk(i) (see (8b)), one gets∣∣∣∣∣µk‖ui‖2 + rk(i)

[
N∑

n=k+1

rn(i)µn‖ui‖2
]
− |ek(i)|

∣∣∣∣∣ =

∣∣∣∣∣µk+1‖ui‖2 + rk+1(i)

[
N∑

n=k+2

rn(i)µn‖ui‖2
]
− |ek+1(i)|

∣∣∣∣∣
(16)

An inductive process can then be formed from (13) and (16).
Notice that for a sufficiently small and decreasing sequence {µk}, it
holds from (5) that |ek+1| < |ek|, so that |ek(i)| → 0, along with
µk‖ui‖2, as one iterates over (16)—i.e., as k grows. Furthermore,
the summation in (13) involves consecutively fewer terms with ever
smaller µk, thus also going to zero. Hence, (12) vanishes for large
enough N and µ̄(i)→ µ̄o(i).

It is possible to formalize this demonstration and show that the
{sign-error LMS}N asymptotically forces the a posteriori output es-
timation error eN+1(i) = uiwi to vanish. Therefore, it can be stated
as a well posed optimization problem similar to the least perturba-
tion principle of the NLMS [19]. This phenomenon is illustrated in
Fig. 2, where one can see the |en(i)| indeed tends to zero.

3.4. Minimizing the number of components

From an application viewpoint, using small µn and large N—as in
the previous section—to guarantee a good approximation for µ̄(i)
is not practical. However, notice that (8b) can be seen as the trun-
cated representation of a real number in terms of Rademacher func-
tions [32]. Hence, it is in the space spanned by the component filters
step sizes. Choosing µn as a basis for the space in which µ̄(i) must
lie then minimizes the number of components needed—as any basis
is a minimal representation of the space it spans [33]. In the binary
environment of embedded systems, an appropriate choice would be
µn = 2−P−n, where P ∈ Z, which yields µ̄(i) ∈ (0, 2−P+1).

This design has several advantages: (i) it is a basis of the un-
derlying number space, thus minimizing the number of components
necessary; (ii) the µn are power-of-two numbers, so that their multi-
plications can be replaced by bit shifts; and (iii) the common factor
2−P acts as the factor α in (11) and constrains the maximum overall
step size, increasing the robustness of the design against the trun-
cated representation and noise. As illustrated in Fig. 2, this choice
of µn is indeed effective.

4. MATCHING THE APA PERFORMANCE

The study of the {sign-error LMS}N presented in Section 3 showed
that is able to at least match the performance of an LMS filter with
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Algorithm 2 The DR-
{
{sign-error LMS}N

}L
‖ui‖2 = ‖ui−1‖2 − |u(i−M + 1)|2 + |u(i)|2 . (1)×
w0,i = wi−1

for ` = 1, . . . , L . DR incremental combination
k = (`− 1) mod K
ε1(i) = d(i− k)− ui−kw`−1,i . (M)×
w

(0)
`,i = w`−1,i

for n = 1, . . . , N . {sign-error LMS}N

w
(n)
`,i = w

(n−1)
`,i + µn u

T
i−k sign[εn(i)]

εn+1(i) = εn(i)− µn ‖ui−k‖2 sign[εn(i)]
end
w`,i = w

(N)
`,i

end
wi = wL,i

Table 1. Multiplications involved in the recursion of different AFs
AF × (e.g., Fig. 4b)

Standard APA (K2 + 2K)M +K3 +K = 13010

DCD-APA [27] M +K2 + 3K + 2 = 232

DR-{LMS}L [8] (2M + 1)L, L� K2 = 6030

Algorithm 2 LM + 1, L� K2 = 3001

Algorithm 2 (optimized) 2M +K − 1 = 209

reduced complexity. This suggests that Algorithm 1 could be used
as the building block of larger combinations, replacing the LMS fil-
ters in the DR-{LMS}L from [8] to further reduce its complexity.
An overview of the resulting algorithm is presented in Algorithm 2.
This implementation requiresLM+1 multiplications. An optimized
version can be found by further exploiting the shift structure of ui,
creating buffers for u(i − p − 1)u(i − q − 1) and ui−p−1u

T
i−q−1,

p, q < K + M , and updating ei at each iteration n. In this case,
the complexity of the algorithm would reduce to 2M +K − 1. Due
to space constraints, this implementation will be presented in future
works. A comparison to the complexity of other adaptive algorithms
with similar performance can be found in Table 1.

5. SIMULATIONS

Data for all simulations are taken from the zero mean Gaussian i.i.d.
sequences {x(i)} and {v(i)}, with σ2

x = 1 and σ2
v = 10−3—

SNR = 30 dB. White input experiments use u(i) = x(i),
whereas correlated inputs are generated using u(i) = βu(i −
1) +

√
1− β2x(i) with β = 0.95, which results in a highly cor-

related signal. Fixed point simulations were performed quantizing
both the data and the result of every operation to a 16 bits two’s
complements representation using a scaling factor of F = 13 bits—
i.e., 1 bit for the signal, 2 bits for the integer part, and 13 bits
for the decimal part. Saturation is used to limit the values to
[−22, 22 − 2−13]. Finally, nonstationary scenarios were simu-
lated using wo(i) = Q[wo(i − 1) + qi], where qi is the realization
of a zero mean Gaussian random vector with covariance matrix σ2

qI

and Q representing the quantization described earlier2. Curves for
the MSE (E e(i)2) and EMSE (E[uiw̃i−1]2) are averaged over 200
and 500 independent realizations for stationary and nonstationary
scenarios, respectively.

2Note the high degree of nonstationarity compared to the literature σ2
q =

[10−6, 10−8]. wo is quantized so that its variance does not grow unbounded.
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Fig. 3. Nonstationary scenario with M = 10 and fixed point quan-
tization (16 bits). (a) White input. sign-error LMS: µ = 2−7;
LMS: µ = µo = 0.0916; and {sign-error LMS}N : N = 6 and
µn = 2−4−n. (b) Correlated input. sign-error LMS: µ = 2−6;
LMS: µ = 0.02; and NLMS: µ = 0.08 and ε = 2−F+1; and
{sign-error LMS}N : N = 5 and µn = 2−5−n.
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Fig. 4. APA and Algorithm 2 in a stationary scenario—M = 100
and K = 10 (simulation performed in MATLAB precision due to
the susceptibility of APA to reduced word length). (a) White input.
APA: µ = 0.3 and ε = 10−6; and DR-

{
{sign-error LMS}N

}L
:

L = 10, N = 20, and µn = 2−n. (b) Correlated input. APA: µ =

0.06 and ε = 10−6; and DR-
{
{sign-error LMS}N

}L
: L = 30,

N = 10, and µn = 2−15−n.

The performance of {sign-error LMS}N in a stationary environ-
ment was already illustrated in Fig. 1 and shown to match that of the
LMS. For nonstationary systems, however, the combination largely
outperforms other adaptive algorithms, with a gain of up to 7 dB
over the LMS for colored inputs—Fig. 3. Notice that in Fig. 3a the
LMS is using the optimal step size µo for σ2

q = 10−4 [19, Lemma
21.1]. These results clearly justify the use of this combination as
a direct replacement for LMS filters as well as a building block for
larger combinations as in Section 4. Indeed, Fig. 4 show that Algo-
rithm 2 is able to match the performance of APA with even lower
complexity.

6. CONCLUSION

The concept of combination as a complexity reduction technique was
explored and developed by proposing an incremental combination of
sign-error LMS filters. This combination was shown to asymptoti-
cally approach the NLMS algorithm and simulations illustrated that
it can match—and even outperform—LMS filters with lower com-
plexity. The {sign-error LMS}N was then used as building blocks
for a larger combination that is able to match the performance of
APA. Its behavior in different scenarios was simulated.
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