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ABSTRACT

The kernel least-mean-square (KLMS) algorithm is an appealing
tool for online identification of nonlinear systems due to its sim-
plicity and robustness. In addition to choosing a reproducing kernel
and setting filter parameters, designing a KLMS adaptive filter re-
quires to select a so-called dictionary in order to get a finite-order
model. This dictionary has a significant impact on performance, and
requires careful consideration. Theoretical analysis of KLMS as a
function of dictionary setting has rarely, if ever, been addressed in
the literature. In an analysis previously published by the authors, the
dictionary elements were assumed to be governed by the same prob-
ability density function of the input data. In this paper, we modify
this study by considering the dictionary as part of the filter param-
eters to be set. This theoretical analysis paves the way for future
investigations on KLMS dictionary design.

Index Terms— Kernel least-mean-square algorithm, conver-
gence analysis, nonlinear adaptive filtering, dictionary learning

1. INTRODUCTION

Complex real-world applications often require nonlinear signal pro-
cessing. During the last decade, adaptive filtering in reproducing
kernel Hilbert spaces (RKHS) has become an appealing tool for on-
line system identification and time series prediction [1]. By replac-
ing inner products with a reproducing kernel, these algorithms pro-
vide an efficient and elegant way to map the input data into a high,
even infinite, dimensional space with an implicit nonlinear applica-
tion. The kernel recursive least-squares (KRLS) algorithm was in-
troduced in [2]. The sliding-window KRLS and the extended KRLS
algorithms were derived in [3,4], respectively. The kernel affine pro-
jection algorithm (KAPA) and, as a particular case, the kernel nor-
malised LMS algorithm (KNLMS), were independently introduced
in [5-8]. The kernel least-mean-square algorithm (KLMS), pro-
posed in [9,10], has attracted much attention in recent years because
of its simplicity and robustness. Along the same line, the quantized
KLMS algorithm (QKLMS) was recently proposed in [11].
Kernel-based adaptive filters use more or less sophisticated cri-
teria to construct a so-called dictionary, in order to operate with a
finite-order model. This dictionary has a significant impact on per-
formance, and requires careful consideration. One of the most infor-
mative criteria uses approximate linear dependency (ALD) condition
to test the ability of the dictionary elements to linearly approximate
the current kernelized input sample [2]. Other well-known crite-
ria include the novelty criterion [12], the coherence criterion [6],

the surprise criterion [13], and the closed-ball sparsification crite-
rion [14]. Recently, KLMS algorithm with ¢;-norm regularization
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has also been studied so that the algorithm can remove obsolete dic-
tionary elements and then adapt to non-stationary environments [ 15—
18].

Few theoretical studies have investigated the convergence be-
havior of kernel-based adaptive filters compared to the number of
algorithm variants that have recently been derived. This situation is
partly due to technical difficulties stemming from filter nonlinearity
with respect to input samples. An extended analysis of the stochastic
behavior of the KLMS algorithm with Gaussian kernel was proposed
in [19], and a closed-form condition for convergence was introduced
in [20]. Stability in the mean of this algorithm with ¢;-norm reg-
ularization was studied in [17, 18]. The aim of these works was to
propose a procedure for designing KLMS filters, with appropriate
parameter setting, given some desired performance. It was assumed
that the dictionary elements are governed by the same probability
density function as the input data. This situation typically arises
with kernel-based adaptive filters that use a short-time sliding dictio-
nary [9,21,22]. Nevertheless, this framework does not allow the user
to pretune the dictionary to improve performance. In this paper, we
propose a theoretical analysis of the KLMS algorithm with Gaussian
kernel that considers the dictionary as part of the filter parameters to
be set. We derive models for the mean and mean-square behavior of
the adaptive weights, and for the mean-square estimation error. We
also determine stability conditions. Finally, we illustrate the validity
of these models with simulations. These derivations pave the way
for future investigations on KLMS dictionary design.

2. KLMS ALGORITHM

2.1. Problem formulation

Let X' be a compact domain in Euclidean space IR* and let ) = IR.
Let pz be a Borel probability measure on Z = X x ) whose regu-
larity properties will be assumed as needed. Considering a sample

= = {(2(i),y(0) )i, M

we aim to find a regression function v using z. Let H be a reproduc-
ing kernel Hilbert space with kernel x : X x X — IR. Restricting
the solution to this space, the function ™ that minimizes the regu-
larized mean-square error

zeZN7

Irbnel%; ly(i) — (x(@)]* + AlYllz, A>0 ()

is of the form

P* = éai k(- x(3)) 3)
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with o = [, ..., an] T the unique solution of the well-posed lin-
ear system in R™:

(K+A)a=y C))

where K is the N x N Gram matrix with (i, j)-th entry x(x(7), (j))
y is the N X 1 vector with ¢-th entry y(¢), and I is the N x NN iden-
tity matrix. This framework is inappropriate to solve problem (2)
in an online manner, since the algorithm would suffer from the on-
going increase of the size /N of the model as new data arrives. A
well-known strategy is to use the fixed-size model:

M
YP() = Z Qi H('ﬂmwi)' ®)
i=1
The set w = {k(-, ©w,;)} with ¢ = {1,..., M} is the so-called
dictionary. Several rules have been proposed in the literature to con-
struct the dictionary in an online manner. Consider a dictionary w,
and a time sequence {x(n), y(n)}n, the KLMS algorithm is an effi-
cient strategy to estimate (5). The update rule is given by

a(n+1) =a(n) +ne(n) ku(n) (6)

where ko, (n) = [K(2(1n), Tw, ), - - -, k(T (1), Ty, )] |5 and e(n) is
the estimation error at instant 7

e(n) = y(n) — P(z(n))

—y(n) - 3% a5 (n) m(@(n), zo,) @

j=1

Consider the mean-square error criterion

B = [ [ Emdp@u)dn  ®
QJxXxy

with po a Borel probability measure on the dictionary space 2. Ex-
cept with simplified assumptions such as in [19], where the authors
consider that the dictionary elements are governed by the same prob-
ability density function as input data, distributions of w generated by
dictionary learning methods cannot be expressed in closed forms. In
this paper, we consider the dictionary as part of the filter parameters
to be set. Our objective is to characterize both transient and steady-
state of the mean-square criterion conditionally to w, that is,

Ez{e*(n)|w} = / ¢2(n) dp(w, ylw). ©)

xxY
‘We shall use the subscript w for quantities conditioned on the dictio-
nary, and Z for expectation with respect to input data distribution.
2.2. Optimal solution

Given w, the estimation error at instant n writes

ew(n) = y(n) — Yu(z(n))

with 9, (z(n)) = 9(x(n))|w. Squaring both sides of equa-
tion (10), and taking the expected value, leads to the mean-square
error (MSE) criterion

10)

Juse.w = E{el(n)}

an
= E{yQ(n)} - 2p:y,wa + aTer,wa

where
Rnn,w - E{K/w(n)ﬂz (n)|w}
is the correlation matrix of the kernelized input, and

pﬁy,w = E{y(n)h"w(n”w}

is the cross-correlation vector between k., (n) and y(n). As Rix,w
is positive definite, the optimum weight vector is given by

-1

a:; = arg moitn JMSE,w(a) = Rm@,w pny,w (12)
and the minimum MSE is
Tmine = E{y*(0)} = Py Reno Py (13)

3. PERFORMANCE ANALYSIS

We shall now derive the convergence model and stability conditions
for the KLMS algorithm with Gaussian kernel, given w. The Gaus-
sian kernel is defined as

K(xi, @;) = exp(— 52z @i — ;°) (14
where o denotes the kernel bandwidth. Inputs @ (n) are assumed
independent zero-mean Gaussian random vectors with autocorrela-
tion matrix R, = E{x(n)x " (n)}. Let v, (n) be the weight error
vector defined as
15)

v, (n) = a(n) — af,.

3.1. Preliminaries and assumptions

Before starting to derive the model, let us recall the following result
on the moment generating function of any quadratic form of a Gaus-
sian vector. Let £ = (£1,...,&.)" be a random vector following
Gaussian distribution with mean and covariance matrix

E{€} =0 and Ree = E{£¢"} (16)
Let the random variable ¢ be the quadratic form of &€ defined as
(=¢ HE+D'E (17)
The moment generating function of ¢ is given by [23]
We(s) =|T — 2sH Ree| 2
(18)

2 —
- exp (%bTRgg(I — 2sHRee) 1b))

This result will be useful to determine expected values. Simplifying
assumptions are required in order to make the study of the stochastic
behavior of v,, (n) mathematically feasible. The following statistical
assumption is required in the analysis:

Assumption 1 &, (n)k., (n) is independent of v, (n).

This assumption, called modified independence assumption (MIA),
is justified in detail in [24]. It has been successfully employed in
several adaptive filter analyses, and has been shown in [24] to be less
restrictive than the well known independence assumption (IA) [25].
It is called here for further reference conditioned MIA, or CMIA, to
distinguish it from the MIA used in [19].
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3.2. Mean weight error analysis
The estimation error e, (n) can be expressed using v, (n) by

ew(n) =y(n) — k() ve(n) — K, (n) o, (19)

Replacing this expression into (6) and using the definition of v, (n),
we obtain the following recursive expression for v, (n):

vl ) = o) Enune) o0
— Nk, (n)v(N)Ky(n) — 1K, (n)ags ke (n)

Taking expected values of both sides of (20), using CMIA and (12)
we have the mean weight error model

E{vo(n+1)} = (I — nRen.w) E{ve(n)} @1

With the Gaussian kernel, the components of R, are given by

[Rnn,w]ij
— Ex{exp(— 5% [[2(n) — o, |* + |2(n) — @, |*])}
22
= exp(— 52 [, |I” + 2w, 7)) @2)
Ex{exp(= 2 [lem)|]” - (2w, +zu,) T2(n)] ) }
Let Zu,; = @u, + Tu, and [, |*) = ||@w, || + 2., ] Com-

paring the second term on the RHS of (22) with (17) with H = I,
b= —,,; and s = — % we get

[Renlis = exp( = g2zl | ) 11+ 2 Rua| 2
(23)
: eXp(ﬁi'Iij Rzm(I + U%wa)ili'wij>

In order to express this formula in a more compact manner, we use

the identity (I—I—Ail)*1 = A(A—i—I)*1 with Ry, (I + %Rm)*l.

This yields
_1
[Rnn,w]i]’ - |I+ %Rzz‘ 2

L ~ @ _ ) 24)
cexp (= g2z 218 17 = @i, Iy 2z 1)1 )

Theorem 3.1 (Stability in the mean) Assume CMIA holds.
Then, for any initial condition, given a dictionary w, the Gaussian
KLMS algorithm (6) asymptotically converges in the mean if the step
size is chosen to satisfy

0<n< (25)

)\max(Rnn,w)
where Ayax(+) denotes the maximum eigenvalue of the matrix. The
entries of Ry . are given by (24).
3.3. Mean-square error analysis

The second-order moments of the weights are related to the MSE
through [19]

JusE,w (1) = Jmin,w + trace{ Rir,wCv.w(n)} (26)

where C, ,(n) denotes the correlation matrix of the weight error
vector v, (n), i.e.,

Cow(n) = E{v,(n) v, (n)}, @n

and Jmin . is the minimum MSE given by (13). The second term on
the RHS of (26) is the excess mean-square error (EMSE), denoted by
Jemsk,w (n). Estimating Jusg,w (1) requires a model for C'y o, (n).

Post-multiplying (20) by its transpose, taking the expectation,
and using CMIA, we obtain the following recursion

Cow(n+1) = Cyu(n) +1°Tw +1° RunwJminw

(28)
— 1 (Riw,wCuvw(n) + Cyuw(n)Riw,w)

with
T, = E{ku(n) k. (n) v, (n) v) (n) ku(n) &l (n)}.  (29)

Evaluating (29) is a challenging step in the analysis. In [19], for in-
dependent Gaussian-distributed dictionary elements, this leads to ex-
tensive calculations of up to eighth-order moments of @ (n). In [18]
we provided a greatly simplified alternative to this. However both
situations do not match the framework developed this paper, since
dictionary elements are now considered as known. In order to deter-
mine the expected value of T'.,,, assuming CMIA holds, the (3, j)-th
entry of T',, writes:

M M

[Tw]ij ~ ;;EX{’%J(") Fwj (n)Few,e(n) Kup(n)} 30)

[Cow(n)]ep-

where kw,i(n) = k(z(n),z.,). Let us define the matrix K7
with (¢, p)-th entry

(K)o = Bx {kw,i(n)ru j(n)kue(n)rup(n)}. G
Expression (30) can be rewritten as
[Tw(n))i; ~ trace{ K7 C, o, (n)} (32)

In order to determine (32), we need to evaluate the expected values
in [K (i )¢p. Let us introduce further the notations

wwiﬂp = Lw; + Lw; + Lw, + Lw,,

_ 33)
s 1% = N2 7 + s 1 + [0, 1 + [l |1
‘We have
[KSJ)}@
= Ex{w,i(n) Kw,j(n) Kw,e(1) Kwp(n)}
:Ex{exp<fi T(n) — T, 2)}
oz k:{§z,p}” (n) | (34)

= exp (= 522 1,y 117
Ex{exp(~ L RIem)| - 25, 2(n)]) }
Now setting H = 21, b = —Zwijup and s = _712 in (17), we get
(Ko = [T+ 2 Reu| 2
FexP (780% [4”5”‘““““(2) - ”i“iﬂv”?rsz;; /4>*1]> -

With this expression, recursion (28) can readily be evaluated. In
lexicographic form, i.e., the columns of each matrix are stacked on
top of each other into a vector, equation (28) becomes

Cy,w (Tl + 1) =Go Cv,w(n) + 772 Jmin,w Trr,w (36)

with

Go=TI-1(Gu1+Gup)+7°Gus 37
where ¢y, (n) and 7., are the lexicographic representations of
matrices C ., (n) and R, w, respectively. Matrix G, is given by:
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Fig. 1. Simulation results (Left: learning curves for system 1. Right: Learning curves for system 2).

e I is the identity matrix of dimension M? x M?;

Go,1 = I® Rk ., where ® denotes the Kronecker product;
Gu2=Ripw® I,

o G, 3 entries are: [Gu 3lit(j—1)M,e+(p-1)M = [Kff’j)]g,p
with 1 < 4,4, ¢6,p < M.
Note that G.,,1 to G, 3 are symmetric matrices, which implies that
the matrix G, is also symmetric. The following results directly
come from (36)—(37):

Theorem 3.2 (Mean-square stability) Assume CMIA holds. For
any initial condition, given a dictionary w, the Gaussian KLMS al-
gorithm (6) is mean-square stable if the matrix G, is stable.

Theorem 3.3 (Mean-squared error) Consider a sufficiently
small step size m, which ensures mean and mean-square stabil-
ity. The steady-state MSE is given by (26) with the lexicographic
representation of C, ., (00) given by

) - 772 Jmin,w (I - Gw)_l Trr,w- (38)

Cy,w(00

4. EXPERIMENT

In this section, we consider two problems of nonlinear system iden-
tification with KLMS. We shall compare simulated learning curves
and analytical models to validate our approach.

In the first experiment, we considered the input sequence

z(n) =px(n—1)+ 0, /1 — p?w(n)

with w(n) a noise following the i.i.d. standard normal distribution.
The nonlinear system was defined as follows:

{ u(n) =0.5z(n) — 0.3z(n —1)
y(n) = u(n) — 0.5u(n) + 0.1u%(n) + v(n)

where v(n) is an additive zero-mean Gaussian noise with standard
deviation o, = 0.05. At each instant, the KLMS algorithm was up-
dated based on the input vector z(n) = [z(n),z(n — 1)] " and the
reference signal y(n). We set 0, = 0.5 and p = 0.5. The Gaussian

(39)

(40)

kernel with bandwidth o = 0.25 was used. Twenty-five samples on
a uniform grid defined on [—1, 1] x [—1, 1] were randomly selected

to be the dictionary elements @, ¢ = 1,...,25. The step size was
set to n = 0.05. The learning curves of the algorithm are depicted
in Fig. 1 (left). The simulated curves were obtained by averaging
over 100 Monte-Carlo runs. Theoretical MSE evolution was esti-
mated by (26), and C,,.,(n) was recursively evaluated with expres-
sion (36). The steady-state MSE was calculated by Theorem 3. It
can be noticed that although inputs x(n) are correlated in time, the-
oretical results derived with CMIA accurately describe the behavior
of the KLMS algorithm.

In the second experiment, we considered the fluid-flow control
problem studied in [26,27]. The input signal was also generated
with (39) with o, = 0.25 and p = 0.5. The nonlinear system was
defined by

u(n) = 0.1044 z(n) 4+ 0.0883 z(n — 1)
+1.4138 y(n — 1) — 0.6065 y(n — 2)

y(n) = 0.3163u(n)/+/0.10 + 0.90 u2(n) + v(n)

where v(n) is an additive zero-mean Gaussian noise with standard
deviation o, = 0.05. A Gaussian kernel with bandwidth o = 0.15
was used. Thirty-seven dictionary elements were pre-selected with
the coherence criterion [6]. The step size was set to n = 0.05.
We ran the KLMS algorithm over 100 Monte-Carlo to empirically
estimate its performance, and we evaluated the theoretical model.
This led us to the learning curves presented in Fig. 1 (right). This
simulation also confirms the validity of our theoretical analysis.

(41

5. CONCLUSION AND PERSPECTIVES

Designing a KLMS-type adaptive filter requires to select a dictio-
nary, which has a significant impact on performance and thus re-
quires careful consideration. In this paper, we derived a theoretical
model to characterize the convergence behavior of the KLMS al-
gorithm with Gaussian kernel. This model depends on dictionary
setting, which can now be considered as part of the filter parameters
to be set. In future work, we will exploit this additional flexibility to
design application-dependent dictionaries.
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