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ABSTRACT

Based on affine projection algorithm (APA) in adaptive filtering and
the technique of parallel computing, we propose a novel algorithm
called ℓ0-APA with its parallel implementation for sparse system
identification and sparse signal recovery. For sparse system iden-
tification, parallel ℓ0-APA can serve as an effective approach for
practical hardware implementation, since it lowers the requirement
on the processors’ clock speed. For sparse signal recovery, it can
significantly reduce the convergence time. Prior algorithms such as
ℓ0-LMS and ℓ0-ZAP can be seen as special cases of ℓ0-APA. Finally
the performance of the proposed algorithm is analyzed and verified
by numerical experiments.

Index Terms— Affine projection algorithm, parallel implemen-
tation, steady-state behavior, transient behavior, compressive sens-
ing

1. INTRODUCTION

Since the unknown systems in the real world are often sparse [2, 3],
there has long been considerable interest in solving sparse system
identification problems [4, 5]. Sparsity indicates a small propor-
tion of nonzero coefficients in a long unknown impulse response.
Without the exploration of sparsity, traditional adaptive filtering al-
gorithms such as least mean square (LMS), recursive least squares
(RLS) and affine projection algorithm (APA) never show further ef-
fectiveness in sparse system identification. Consequently, some al-
gorithms utilizing the prior knowledge of sparsity have been pro-
posed in recent years. M-Max Normalized LMS (MMax-NLMS)
[6], Gradient Projection (GP) [7], Sequential Partial Update LMS
(S-LMS) [8] and Proportionate NLMS (PNLMS) [2, 9] are several
examples.

Established in the past few years, a novel branch of sparse sig-
nal processing, compressive sensing (CS) [10, 11], gives theoretical
guarantee of successful reconstruction from highly incomplete mea-
surements. Borrowing the sparse penalty from some recovery algo-
rithms in CS, several new methods for sparse system identification
such as ZA-LMS [12] and ℓ0-LMS [13, 14] have been developed re-
cently. Besides the successful application in system identification,
ℓ0-LMS may also serve as an effective reconstruction algorithm for
CS. The relationship between the adaptive filtering framework and
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compressed signal recovery is addressed in [14]. By using a zero-
point attraction as the sparse penalty, the above adaptive algorithms
have behaved pretty well in both sparse system identification and
sparse signal recovery. It has been numerically verified [14] and the-
oretically proved [15] that the overall performance is enhanced in
both steady-state mean-square deviation (MSD) and probability of
successful reconstruction, especially in the practical noisy scenarios.
Very recently, there are several algorithms including TD-ZA-LMS
[16] and non-uniform norm constraint LMS [17] proposed based on
similar ideas.

However, the drawbacks of ℓ0-LMS and other similar algorithms
are obvious. They are not practical approaches for hardware imple-
mentation due to their sample-by-sample iterative process. The pro-
cessor has to finish updating the filter tap-weights before next sample
comes in. This often results in expensive or impractical high require-
ments on the processors’ clock speed. Designing algorithms with
parallel implementation has become an effective way to solve such
kind of problems [18, 19]. Based on the advancement of integrated
circuits, parallel computing has been popular especially via digital
processors such as FPGA and GPU. Parallel algorithms would make
it possible to finish a task with lower clock frequency than their se-
rial counterparts, and at the same time no prolonged period of time
is needed due to the efficient parallel structures.

Affine projection algorithm (APA) [20] is an effective approach
in adaptive filtering particularly for applications such as acoustic
echo cancellation [21], active noise control [22] and distributed es-
timation [23]. Compared to other filtering algorithms such as LMS
and normalized LMS, APA has shown better behavior in the scenar-
ios of colored input signal [27]. Several types of fast implementation
such as fast affine projection (FAP) [24] and block exact fast affine
projection (BEFAP) [25], have been proposed to reduce computa-
tional complexity. On the other hand, the steady-state performance
and convergence behavior of APA have been extensively studied in
[26, 27].

In order to solve the difficulty in hardware implementation
caused by the serial structure of available sparsity included adaptive
algorithms, we propose a new sparse constraint algorithm based on
APA called ℓ0-APA with its practical parallel implementation for
sparse system identification and sparse signal recovery. We further
demonstrate that the parallel implementation is more advantageous
in the later than in the former. Because the reconstruction in CS is
usually high-dimensional and very expensive in time complexity,
parallel computing can significantly reduce the time to attain the
desired results, especially in online scenarios. In addition, prior
algorithms such as ℓ0-LMS and ℓ0-ZAP [14] can be regarded as
special cases of the proposed algorithm. Performance analysis on
ℓ0-APA is also conducted and justified by experiments in this work.
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Table 1. Procedure of ℓ0-APA
Input: {xn, dn},M, µ, γ,α;
Output: filtered result yn, estimation error en, and

estimated system coefficients s̃.
Initialization: s̃ = 0,w0 = 0, k = 0.
For n = 0, 1, 2, · · ·

Construct xn by definition;
yn = xT

n s̃;
en = dn − yn;
If mod(n, M ) = 0

Construct Xk and dk by definition;
ŵk+1 = wk − γg(wk);
wk+1 = ŵk+1 + µXT

k (XkX
T
k )

−1(dk −Xkŵk+1);
k = k + 1;
s̃ = wk;

End if
Output yn, en, and s̃;

End For

2. ℓ0-APA AND ITS PARALLEL IMPLEMENTATION

We denote input signal, desired signal, unknown coefficients, and
adaptive tap-weights by, respectively, xn, dn, s ∈ RN , and wn ∈
RN , where n and N are the time instant and filter length. One has
dn = xT

ns + vn, where xn = [xn, xn−1, · · · , xn−N+1]
T and vn

denote input vector and measurement noise, respectively. We follow
the assumption of Block APA [25] that the adaptive algorithm works
once after M new samples are collected. Therefore, the input of
ℓ0-APA is a matrix of data

Xk = [xkM ,xkM−1, · · · ,x(k−1)M+1]
T

and a vector of dk = [dkM , dkM−1, · · · , d(k−1)M+1]
T with rela-

tion dk = Xks+vk, where vk = [vkM , vkM−1, · · · , v(k−1)M+1]
T

denotes the noise vector and k is the iteration instant.
Borrowing the idea of zero-point attraction in ℓ0-LMS, we may

modify Block APA [25] to explore the sparsity of unknown sys-
tems. The proposed ℓ0-APA may be summarized into a two-step
procedure, i.e., a zero-point attraction on the tap-weights is con-
ducted and followed by a projection onto the solution space of dk =
Xkw. The procedure of ℓ0-APA is given in Table 1. In this al-
gorithm, g(wn) = [g(wn,1), g(wn,2), · · · , g(wn,N )]T denotes the
zero-point attraction, which is commonly used in [14, 15], where
g(t) is defined as follows,

g(t) =

{
−α2t+ αsgn(t), 0 < |t| ≤ 1/α;

0, elsewhere.
(1)

One may readily find that ℓ0-APA is a generalization of ℓ0-LMS. In
fact, ℓ0-APA degenerates to the latter in the situations with M = 1.

Next we consider the parallel implementation of the proposed
sparse constraint APA. In the parallel scenario, we assume that there
are Q parallel processors that work separately and independently at
the same time. Therefore, Q adjacent input matrices

Xl =
[
XT

lQ,X
T
lQ−1, · · · ,XT

(l−1)Q+1

]T

Table 2. Procedure of Parallel ℓ0-APA
Input: {xn, dn},M,Q, µ, γ,α;
Output: filtered result yn, estimation error en, and

estimated system coefficients s̃.
Initialization: s̃ = 0,w0 = 0, l = 0.
For n = 0, 1, 2, · · ·

Construct xn by definition;
yn = xT

n s̃;
en = dn − yn;
If mod(n, M ·Q) = 0
Construct {XlQ−i,dlQ−i}i=0,1,··· ,Q−1 by definition;
ŵl+1 = wl − γg(wl);
Calculate in parallel for i = 0, 1, · · · , Q− 1,
∆l,i = XT

lQ−i(XlQ−iX
T
lQ−i)

−1(dlQ−i −XlQ−iŵl+1) ;
wl+1 = ŵl+1 + µ

∑Q−1
i=0 ∆l,i;

l = l + 1;
s̃ = wl;

End If
Output yn, en, and s̃;

End For

and desired vectors dl =
[
dT
lQ,d

T
lQ−1, · · · ,dT

(l−1)Q+1

]T may
be processed simultaneously, where l denotes the parallel iter-
ation number. Therefore, after one step of zero-point attrac-
tion, the projections to respective solution spaces of {dlQ−i =
XlQ−iw}i=0,1,··· ,Q−1 are implemented on separated processors,
while the increments of all these projections are summed up at the
end of the iteration to finally update the tap-weights. The detailed
procedures of Parallel ℓ0-APA are in Table 2, where ∆l,i denotes the
the increment of the projection in (i + 1)th processor at lth parallel
iteration.

As stated in Section 1, the disadvantages of serial algorithms
including ℓ0-LMS and ℓ0-APA are obvious. The single processor
has to finish all task, hence it results in a high requirement on the
processor’s clock frequency. In the parallel computing scenario, Q
processors may work together to update the tap-weights. Therefore,
the clock frequency of parallel implementation may reduce to 1/Q
of the serial one. Actually the parallel algorithm is a trade-off be-
tween the area and the clock frequency of the processors. We may
notice that it is inevitable for the parallel algorithm to have time de-
lay as it updates the tap-weights less frequently. However, since we
can still use the latest tap-weights to filter the inputs, the time de-
lay for filtered output yn and estimation error en is not a significant
sacrifice.

3. PERFORMANCE ANALYSIS

Since parallel ℓ0-APA is equivalent to ℓ0-APA mathematically when
we choose Q = 1, we only consider the theoretical analysis of par-
allel ℓ0-APA in this section.

3.1. Assumptions

As is stated in [15], the unknown coefficients could be classified into
three groups: large, small, and zero. The sets of the indices of these
groups are denoted by CL, CS , and Co respectively. We assume that
entries of Xk and vk follow i.i.d. Gaussian distribution N (0, Pa)
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and N (0, Pv) respectively. The assumptions in [15] are adopted in
this work in order to simplify the analysis. In addition, we add a new
assumption that (XkX

T
k )

−1 ≈ I/NPa.

3.2. Steady-state Performance

For simplicity we take µ = 1 in the following sections. Denote the
deviation of wn by hn, i.e., hn = wn − s. And we use ΣL,n =∑

i∈CL
E{h2

n,i} and ΣS,n =
∑

i∈CS
E{h2

n,i} to denote expecta-
tion of the sum of the squared deviations of the first two groups.
Here E denotes the expectation operator. For the zero coefficient
group, w = (E{h2

∞,i})1/2 (i ∈ Co) is adopted to represent the devi-
ation of the tap-weights. Another three notations we will utilize are
Dn = E{∥hn∥22}, Pn = E{hT

ng(wn)}, and Gn = E{∥g(wn)∥22}.
Armed with these assumptions and notations, the following theorem
on the steady-state behavior of parallel ℓ0-APA is derived.

Theorem 1 Let

S∞ =
[
ΣL,∞ ΣS,∞ D∞ P∞ G∞

]T
.

Then S∞ and w are approximately determined by the following lin-
ear and quadratic equations

D(w) = BS∞, (2)

d2w
2 + d1w + e(D∞ − 2γP∞ + γ2G∞) + f = 0, (3)

where the matrix B, vector D(w), scalars d1, d2, e, and f are given
in subsection 7.1.

The proof of this theorem is in section 7. Note that Dn is the
mean-square deviation (MSD) of parallel ℓ0-APA after the nth up-
date and consequently D∞ is the steady-state MSD. Since the high-
est degree of the polynomials of w appeared in the equations is 2,
these equations can be solved analytically. Then we can get the
steady-state MSD.

Due to the limited space this paper, the analysis of transient be-
havior is omitted. More details can be found in [1].

4. APPLICATION IN COMPRESSIVE SENSING

In CS, the problem of reconstructing a sparse signal z ∈ RN from
the highly incomplete measurements y = Az + v, where A ∈
RM×N and M ≪ N is considered. The relationship between adap-
tive filtering framework and compressive sensing has been addressed
by [14].

To make reasonable comparison, we divide A into Q sub-
matrices A0,A1, · · · ,AQ−1 of size M/Q × N and divide y and
v into yi and vi (0 ≤ i ≤ Q − 1) correspondingly. Then there is
yi = Aiz + vi. For ℓ0-APA, we choose Xk = Amod(k,Q), which
means the Q sub-matrices are put into the adaptive filtering frame-
work circularly. In the scenarios of Q = M and Q = 1, ℓ0-APA
becomes the ℓ0-LMS and ℓ0-ZAP respectively. Therefore, ℓ0-APA
is also a general framework for prior algorithms for CS. For parallel
ℓ0-APA, we choose Xl = A for all l ≥ 0, which means the Q
sub-matrices are processed in parallel in each iteration. In this way,
the serial processor and each independent processor of the parallel
algorithm share the same computational complexity since they all
deal with an M/Q ×N sub-matrix. When the two processors have
the same clock frequency, the parallel algorithm will converge much
faster because Q projections are conducted at the same time. This
will be illustrated by experiments in section 5.
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Fig. 1. Steady-state MSD versus γ, α, and Q.

5. NUMERICAL EXPERIMENTS

Experiments are conducted to justify the presented results. 1

Figure 1 illustrates the accuracy of the steady-state performance
analysis in Theorem 1. In this experiment, we investigate how the
steady-state MSD changes with parameters γ, α, and Q and com-
pare the results by the simulations and Theorem 1. Note that in the
experiment with Q, we keep the product of Q and M the same. This
can illustrate the relationship between the steady-state MSD and the
number of parallel processors when the update frequency is kept the
same. From the notations in section 7.1, we know that the steady
state MSD is a function of the product of Q and M , and the ex-
periment verifies this since the steady-state MSD does not change
significantly with Q.

Figure 2 shows that for CS, the probability of exact reconstruc-
tion of parallel ℓ0-APA is approximately the same as prior algo-
rithms such as ℓ0-LMS and ℓ0-ZAP. This figure implies that we may
need less measurements to recover a sparse signal using the adaptive
filtering framework than referred methods.

Figure 3 demonstrates that for CS, to achieve the same steady-
state MSD, the parallel ℓ0-APA has the highest convergence speed
among ℓ0-LMS, ℓ0-ZAP, and ℓ0-APA. This advantage naturally
comes from the parallel structure.

6. CONCLUSIONS

The proposed algorithm ℓ0-APA is a general framework for prior
algorithms and its parallel implementation is an effective approach
to sparse system identification and CS. For sparse system identifica-
tion, parallel ℓ0-APA lowers the requirements on the clock speed of

1The code for these experiments is available at
http://gu.ee.tsinghua.edu.cn/publications#yd1
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the processor, and for CS, the parallel algorithm enhances the con-
vergence speed. The performance analysis in this work is also in
good accordance with the simulation results.

7. APPENDIX

7.1. Notations

In this section we give the detailed expressions of B, D(w), d1, d2,
e, and f . First denote the cardinality of CL, CS , and Co by NL, NS ,
and N0. Then we have

d1 = −2
√

2/πγαC1(1 + γα2), d2 = C1C3 − 1,

e = MQ/N2, f = ePv/Pa + C1γ
2α2,

B =

⎡

⎢⎢⎢⎢⎣

C1 − 1 0 eNL −2γeNL γ2eNL

0 C1C3 − 1 eNS −2γeNS γ2eNS

1 1 −1 0 0
0 α2 0 1 0
0 −α4 0 0 1

⎤

⎥⎥⎥⎥⎦
,

D(w) =

⎡

⎢⎢⎢⎢⎣

−ePvNL/Pa

C1(C4C6 − γ2C5)− ePvNS/Pa

−N0w
2

C6 +N0α(
√

2/πw − αw2)
C5 − 2α2C6 +N0α

2(α2w2 − 2
√

2/παw + 1)

⎤

⎥⎥⎥⎥⎦
,

where C1 = 1 − 2MQ/N + MQ(MQ + 1)/N2, C2 = (1 +
γα2) (1−MQ/N), C3 = 1+ 2γα2 + γ2α4, C4 = 2γ(1 + γα2),

C5 = ∥g(s)∥22, and C6 = γ(1−MQ/N)C5/(C2 − 1).

7.2. Proof of Theorem 1

Proof: The update principle given by parallel ℓ0-APA is

wl+1 = ŵl +
Q−1∑

i=0

XT
lQ−i(XlQ−iX

T
lQ−i)

−1(dlQ−i −XlQ−iŵl).

Considering wl+1 = hl+1 + s, ŵl+1 = wl − γg(wl), dlQ−i =
XlQ−is+vlQ−i, and using the assumption that (XlQ−iX

T
lQ−i)

−1 ≈
I/NPa, we know that the following equation holds approximately

hl+1 =hl − γg(wl)

+
1

NPa

Q−1∑

i=0

XT
lQ−i (−XlQ−i(hl − γg(wl)) + vlQ−i) .

By taking expectation on hl+1h
T
l+1 and after a series of derivation,

we get

E{hl+1h
T
l+1} =

(
1− 2MQ

N
+

(Q− 1)QM2

N2

)
El,0

+
Q

N2P 2
a
(El,1 − γEl,2 + γ2El,3) +

MQPv

N2Pa
,

where

El,0 =E{hlh
T
l }− γE{g(wl)h

T
l ,

+ hlg(wl)
T}+ γ2E{g(wl)g(wl)

T},

El,1 =E{XT
lQXlQhlh

T
l X

T
lQXlQ},

El,2 =E{XT
lQXlQ(hlg(wl)

T + g(wl)h
T
l )X

T
lQXlQ},

El,3 =E{XT
lQXlQg(wl)g(wl)

TXT
lQXlQ}.

Since the columns of XT
lQ are xlQM−i, 0 ≤ i ≤ M − 1, there

is

El,1

=E

{(
M−1∑

i=0

xlQ−ix
T
lQ−i

)
hlh

T
l

(
M−1∑

i=0

xlQ−ix
T
lQ−i

)}

=ME
{
xlQx

T
lQhlh

T
l xlQx

T
lQ

}
+M (M − 1)P 2

aE{hlh
T
l }

=M
[
Patr(PaE{hlh

T
l })I+ 2P 2

aE{hlh
T
l }
]

+M (M − 1)P 2
aE{hlh

T
l }

=MP 2
a

[
Dl−1I+ (M + 1)E{hlh

T
l }
]
,

where tr(·) denotes the trace of matrices. Similar results can be
derived for El,2 and El,3. By substituting the expressions of El,1,
El,2 and El,3 into E{hl+1h

T
l+1} and taking out the ith element on

the diagonal of E{hl+1h
T
l+1}, we get

E{h2
l+1,i}

=C1(E{h2
l,i}− 2γE{hl,ig(wl,i)}+ γ2E{g(wl,i)

2})

+
MQ
N2

(Dl−1 − 2γPl−1 + γ2Gl−1) +
MQPv

N2Pa
,

where C1 is defined in subsection 7.1. By analyzing the situations
when i ∈ CL, i ∈ CS , and i ∈ Co respectively with the method in
[15], we arrive at the conclusion.
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