
ROBUST DISTRIBUTED DETECTION OVER ADAPTIVE DIFFUSION NETWORKS

Sara Al-Sayed⋆, Abdelhak M. Zoubir⋆, and Ali H. Sayed†

⋆Signal Processing Group, Technische Universität Darmstadt, 64283 Darmstadt, Germany
Email: {salsayed, zoubir}@spg.tu-darmstadt.de

†Department of Electrical Engineering, University of California, Los Angeles, CA 90095
Email: sayed@ee.ucla.edu

ABSTRACT

Diffusion adaptation techniques based on the least-mean-

squares criterion have been proposed for distributed detection of

a signal in Gaussian-distributed noise, forgoing the need for a fu-

sion center. However, least-mean-squares solutions are generally

non-robust against impulsive noise. In this work, we combine non-

linear filtering with diffusion adaptation and propose a strategy

for distributed detection in the presence of impulsive noise. The

superiority of the algorithm is validated experimentally.

Index Terms— Adaptive networks, diffusion LMS, robust dis-

tributed detection, hypothesis testing, error nonlinearity.

1. INTRODUCTION

We consider the problem of distributed detection over adaptive

networks in the presence of impulsive noise. In the absence of a

fusion center, each node cooperates with its neighbors, diffusing

information through the network, in order to establish the presence

or absence of a known signal using measurements that are cor-

rupted by impulsive noise. By relying solely on local interactions

and in-network processing, distributed detection techniques render

networks reliable, resilient to node and link failure, scalable and

resource efficient. Furthermore, by deploying adaptive techniques

for distributed detection, networks are endowed with online learning

and tracking abilities in non-stationary environments [1, 2]. In [2], a

distributed detection technique was proposed under a Gaussian noise

assumption and based on the diffusion least-mean-squares (LMS)

algorithm, previously developed in [3]. The presence of impulsive

noise, however, degrades the performance of the solution [4, 5]. An

impulsive noise process can be described as one whose realizations

contain sparse, random samples of amplitude much higher than

nominally accounted for, and hence best modeled by heavy-tailed

distributions [5–7]. The incorporation of an error nonlinearity into

adaptive filter updates is useful in mitigating the adverse effects of

impulsive noise [8–14]. Motivated by these observations, in this

work, we develop a robust diffusion strategy for distributed detec-

tion that is able to deliver enhanced performance under impulsive

noise conditions.
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(http://www.cocoon.tu-darmstadt.de). The work of Ali H. Sayed was sup-
ported in part by NSF grant CCF-1011918.

2. DETECTION PROBLEM FORMULATION

2.1. Data model

The network under consideration is composed of N nodes dis-

tributed over some region in space. Two nodes that can exchange

data are said to be connected. The set of nodes connected to Node

k, including itself, is referred to as its neighborhood, and is denoted

by Nk. The degree of Node k, denoted by nk, is the number of its

neighbors. At each time instant i ≥ 0, each node k has access to

a real-valued scalar measurement dk (i) arising from realizations

of a random process dk (i), where the boldface notation is used to

denote random variables. These measurements relate to an unknown

real-valued vector parameter wo of sizeM according to

dk (i) = uk,iw
o + vk (i) (1)

where uk,i is a known deterministic real-valued row regression vec-

tor of sizeM ; and vk (i) is a real-valued scalar wide-sense stationary
zero-mean impulsive noise process with variance σ2

v,k. The random

variables vk (i) and vl (j) are spatially and temporally independent,

for k 6= l or i 6= j. It is assumed that the noise probability density

functions, fvk
(vk), are symmetric, for all k, i.e., Ev

2p−1
k (i) = 0,

p = 1, 2, . . ., where E denotes expectation. Model (1) was used

in [2]; however, in [2], the noise was assumed to be Gaussian dis-

tributed.

The objective is for every node in the network to establish the

presence or absence of a known signal given noisy observations,

which relates to the simple hypothesis testing problem: H0: w
o = 0;

H1: w
o = ws, where ws is known.

We arrange the data from all nodes 1, . . . , N at time instant i
into vectors and matrices as follows:

di = col {d1 (i) , . . . ,dN (i)} (2)

Ui = col {u1,i, . . . , uN,i} (3)

vi = col {v1 (i) , . . . ,vN (i)} (4)

Rv = diag
{

σ2
v,1, . . . , σ

2
v,N

}

(5)

where the col and diag operators stack their arguments column-wise

and diagonally, respectively. Then, we stack the data di, Ui and vi

from all time instants i, i − 1 . . . , 0 in the same manner to obtain

d0:i, U0:i, v0:i and Rv,0:i. We may therefore express the data model

(1) compactly as

d0:i = U0:iw
o + v0:i. (6)

2.2. Neyman–Pearson-based detection

Based on the Neyman–Pearson (NP) criterion [15], the detector that

maximizes the detection probability Pd,i given a target false-alarm
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probability Pf is given by a comparison test of the form

Ti (d0:i)
H0

≶
H1

γi. (7)

If the noise random vector v0:i is Gaussian distributed, i.e., v0:i ∼
N (0, Rv,0:i), then the test-statistic Ti (d0:i) is given by [2]

Ti (d0:i) = wT
s U

T
0:iR

−1
v,0:id0:i (8)

where (·)T and (·)−1
denote matrix transposition and inversion,

respectively. The threshold γi is computed from the target false-

alarm probability as γi = σi Q
−1 (Pf ), where Q(·) is the right-tail

Gaussian probability function and σ2
i = wT

s U
T
0:iR

−1
v,0:iU0:iws.

Assuming the matrix U0:i is full-rank with M ≤ N , the

minimum-variance unbiased (MVU) estimator of wo given d0:i

in (6) is given by the Gauss–Markov theorem [1]:

w
mvu
i =

(

UT
0:iR

−1
v,0:iU0:i

)−1

UT
0:iR

−1
v,0:id0:i. (9)

Thus, the NP-optimal test-statistic in (8) can be rewritten in terms of

wmvu
i in (9) as

Ti (w
mvu
i ) = wT

s U
T
0:iR

−1
v,0:iU0:iw

mvu
i . (10)

3. DISTRIBUTED DETECTION

The computation, at each node in the network, of the NP-optimal

test-statistic Ti (d0:i) or Ti (w
mvu
i ), using (8) or (10), respectively,

and theMVU estimatorwmvu
i , using (9), requires that each node have

access to the data {dk (j) , uk,j , σ
2
v,k} from all nodes 1, . . . , N and

all time instants j = 0, . . . , i. Since a node can only communicate

with its neighbors, adaptive diffusion algorithms present themselves

as a viable technique for the approximation of wmvu
i at each node in

the network in a distributed fashion by means of local interactions

and in-network processing, as explained in [2,3,16]. Adaptive diffu-

sion algorithms guarantee the dissemination of information from all

nodes through the network, so that over time, each node will have

incorporated data from beyond its neighborhood’s reach. However,

the algorithms developed in [2] work well for distributed detection

under the Gaussian assumption on the measurement noise. In this

work, we consider a more robust adaptive diffusion algorithm, based

on the stand-alone counterpart in [5], and show how to extend the

distributed formulation of [2] to accommodate impulsive noise sce-

narios.

3.1. Robust diffusion adaptation

Consider an N × N matrix A with non-negative real entries al,k
satisfying

al,k = 0 if l /∈ Nk, 1
TA = 1

T
(11)

where 1 is the all-one column vector of appropriate size. Let

ek (i) , dk (i) − uk,iwk,i−1 denote the output error of the kth

node at time instant i. The update equations for each node k of the

adapt-then-combine (ATC) version of the diffusion LMS algorithm

are given by [3]

ψk,i = wk,i−1 + µku
T
k,iek (i) (12)

wk,i =
∑

l∈Nk

al,kψl,i

where µk is a positive step-size parameter. Motivated by the discus-

sion in [5], we introduce an error nonlinearity, hk,i (ek (i)), into the
adaptation step:

ψk,i = wk,i−1 + µku
T
k,ihk,i (ek (i)) . (13)

The error nonlinearity hk,i (·) is chosen to be a linear combination

of preselected nonlinear basis functions:

hk,i (ek (i)) = αT
k,iϕk,i (14)

where αk,i and ϕk,i, both vectors of length Bk, are Node k’s vector
of non-negative combination weights at time instant i and vector of

nonlinear basis functions evaluated at its output error at time instant

i, respectively:

αk,i , [αk,i (1) , . . . , αk,i (Bk)]
T

(15)

ϕk,i , [φk,1 (ek (i)) , . . . , φk,Bk
(ek (i))]

T

If Node k were to run the stand-alone counterpart of the adaptive

filter in (13), by setting wk,i to ψk,i, then the optimal nonlinearity

that minimizes Node k’s mean-square error (MSE) was given in [14]

as

hopt

k,i (x) = −
f ′
ek(i)

(x)

f
ek(i) (x)

(16)

in terms of the probability density function (pdf) of the error signal,

where f ′ (x) , df(x)
dx

. Here, instead, the nonlinearity is chosen

according to (14), and the vector αk,i is found by minimizing the

MSE between hk,i (ek (i)) and the optimal nonlinearity:

αopt

k,i = argmin
αk,i

E

(

hopt

k,i (ek (i))− hk,i (ek (i))
)2

. (17)

For online adaptation purposes, each node k estimates αopt

k,i adap-

tively and jointly withwo, by recourse to a stochastic-gradient recur-

sion and subject to a non-negativity constraint [5, 17]. The ensuing

moments, Rϕk,i
, Eϕk,iϕ

T
k,i and Eϕ′

k,i, are estimated by means

of smoothing recursions.

The choice of basis functions should conform to prior knowl-

edge about the nature of the noise in the data model (1) [18–21].

For example, if we know the noise to be of an impulsive nature, a

sensible choice would be

φk,b (x) = tanh (bx) , b = 1, . . . , Bk (18)

for every node k, where tanh (·) above and sech (·) in the table fur-
ther ahead denote the hyperbolic tangent and secant functions, re-

spectively.

The resulting algorithm is listed in Table 1, where νk, λk ∈
(0, 1) and ǫ > 0 are constants, with νk usually close to 1 for the

smoothing recursions, and ǫ very small to prevent division by zero;

and ‖.‖∞ denotes the maximum absolute entry of its vector argu-

ment.

3.2. Robust diffusion detection algorithm

We focus our attention on the incremental update for the kth node in
the ATC robust diffusion algorithm:

ψk,i = wk,i−1 + µku
T
k,i

Bk
∑

b=1

αk,i(b) tanh (bek (i)) . (19)

Linearizing the error nonlinearities φk,b (i) = tanh (bek (i)), b =
1, . . . , Bk, by a Taylor series around ek (i) = 0 gives φk,b (i) ≈
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Table 1. Robust Diffusion Detection Algorithm

Initializations: ws, Bk , αk,−1 ∈ R
Bk
++, R̂ϕk,−1

, ϕ̂′
k,−1, νk , λk , ǫ, µk .

Start with wk,−1 = 0 for every node k. For every time instant i ≥ 0, repeat

Error nonlinearity update: for every node k, repeat

ek (i) = dk (i)− uk,iwk,i−1

φk,b (i) = tanh (bek (i)) , b = 1, . . . , Bk

ϕk,i = col
{

φk,1 (i) , . . . , φk,Bk
(i)

}

R̂ϕk,i
= νkR̂ϕk,i−1

+ (1− νk)ϕk,iϕ
T
k,i

φ′k,b (i) = b sech2 (bek (i)) , b = 1, . . . , Bk

ϕ′
k,i = col

{

φ′k,1 (i) , . . . , φ
′
k,Bk

(i)
}

ϕ̂′
k,i = νkϕ̂

′
k,i−1 + (1− νk)ϕ

′
k,i

δk,i = 2(R̂ϕk,i
αk,i−1 − ϕ̂′

k,i
)

λk (i) = λk
min{αk,i−1(b),1≤b≤Bk}

‖δk,i‖
∞

+ǫ

αk,i = αk,i−1 − λk (i) δk,i

hk (i) = αT
k,iϕk,i

Incremental update: for every node k, repeat
ψk,i = wk,i−1 + µku

T
k,ihk (i)

Diffusion update: for every node k, repeat
wk,i =

∑

l∈Nk

al,kψl,i

Decision: for every node k, repeat
Tk,i = wT

s Qk,iwk,i (see (25) and the note thereafter)

Tk,i
H0

≶
H1

γk,i (see (30)–(32))

bek (i), b = 1, . . . , Bk . The incremental and diffusion updates in

the algorithm can be combined as

wk,i ≈
∑

l∈Nk

al,k
[

IM − µl

(

αT
l,iβl

)

uT
l,iul,i

]

wk,i−1 (20)

+
∑

l∈Nk

al,kµl

(

αT
l,iβl

)

uT
l,idl (i)

where βk = [1, . . . , Bk]
T
and IM is the identity matrix of sizeM .

Let µk (i) = µk

(

αT
k,iβk

)

, Ck,i = IM − µk (i)u
T
k,iuk,i and Ek =

diag {ek}, where ek is the all-zero vector of length N and kth entry
equal to 1. By induction, it can be verified that wk,i ≈ Kk,id0:i,
where

Kk,i =





∑

l∈Nk

al,kµl (i)U
T
i El

∑

l∈Nk

al,kCl,iKl,i−1



 . (21)

By the central limit theorem, the estimateswk,i are therefore asymp-

totically, as i → ∞, approximately Gaussian distributed. In this

case, ifKk,i is full-rank withM ≤ N , and motivated by (6) and (8),

a near-optimal NP detector at the kth node is given by

Tk,i (wk,i)
H0

≶
H1

γk,i (22)

with the local test-statistic given by

Tk,i (wk,i) = wT
s Q

opt

k,iwk,i (23)

where

Qopt

k,i = (Kk,iU0:i)
T
(

Kk,iRv,0:iK
T
k,i

)−1

. (24)

The threshold at the kth node, γk,i, is to be computed in a distributed

manner as well in terms of the target false-alarm probability. This is

addressed in Sec. 4.

In order to reduce the communication and computational burden

at each node, we may approximate Qopt

k,i in (24). If we overlook

the diffusion operation by setting A to the identity matrix in (21), a

reasonable substitute for Qopt

k,i under small step-sizes µk is

Qk,i =

(

i
∑

j=0

µk (j) u
T
k,juk,j

)(

i
∑

j=0

µ2
k (j)u

T
k,juk,j

)−1

(25)

for i ≥ M − 1, assuming invertibility. For i < M − 1, Qk,i is set

to IM . Asymptotically, as i→ ∞, the random variable Qk,i can be

shown to tend, in expectation, to a scaled identity matrix:

lim
i→∞

EQk,i = ηkIM . (26)

where ηk is the limiting value of Eµ−1
k (i), subject to algorithm

stability. Since the inverted expression in (25) constitutes a running

sum over time of unit-rank matrices, we may appeal to the Sherman–

Morrison formula for matrix inversion to simplify the computation

[22].

4. PERFORMANCE ANALYSIS

In this section, we analyze briefly the detection performance of the

robust diffusion detection algorithm subject to the data model de-

scribed in Sec. 2.1. Let w̃k,i , wo −wk,i denote Node k’s weight-
error vector at time instant i. We make the following additional as-

sumptions:

(A1) The step-size µk is sufficiently small, for all k.
(A2) αk,i is independent of vl (i) and w̃l,i, for all k, l, and i.

The second assumption is reasonable under small step-size µk, more

so when νk is close to 1, and asymptotically, as i→ ∞ [1, 23].

For sufficiently large i, the test-statistics are distributed as

Tk,i (wk,i) ∼ N
(

ηkw
T
s Ewk,i, σ

2
k,i

)

(27)

where σ2
k,i = η2kw

T
s Rw̃k,i

ws, with Rw̃k,i
denoting Node k’s

weight-error covariance matrix at time instant i:

Rw̃k,i
, E (w̃k,i − E w̃k,i) (w̃k,i − E w̃k,i)

T . (28)

Hence, the detection, false-alarm and miss probabilities at each node

k and time instant i are asymptotically given by

Pd,k,i = Q

(

γk,i − ηkw
T
s ws + ηkw

T
s E w̃k,i

σk,i

)

(29)

Pf,k,i = Q

(

γk,i + ηkw
T
s E w̃k,i

σk,i

)

and Pm,k,i = 1 − Pd,k,i. Given target false-alarm probabilities at

each node k and time instant i, under the assumption of asymptotic

unbiasedness of the weight estimateswk,i, the corresponding detec-

tion thresholds may subsequently be approximated, in a distributed

manner, as

γk,i =
1√
g
σ̂A=I
k,i Q−1 (Pf,k,i) (30)

where
(

σ̂A=I
k,i

)2
= wT

s Qk,iR̂
A=I
w̃k,i

Qk,iws, with R̂
A=I
w̃k,i

given by the

following recursion:

R̂A=I
w̃k,i

=
[

IM − µkp̂k(i)u
T
k,iuk,i

]

R̂A=I
w̃k,i−1

[

IM − µk p̂k(i)u
T
k,iuk,i

]

+ µ2
k ŝk(i)u

T
k,iuk,i, R̂A=I

w̃k,−1
= 0. (31)
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Network Topology
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Fig. 1. Network topology, node nominal noise variances σ̄2
v,k and

regressor covariance traces Tr (Ru,k), for N = 30 nodes.

The estimated moments p̂k (i) and ŝk (i) are stochastic approxima-

tions of their true counterparts, reusing smoothed estimates from the

algorithm:

p̂k (i) = αT
k,iϕ̂

′
k,i ŝk (i) = αT

k,iR̂ϕk,i
αk,i (32)

The approximate recursion in (31) follows from straightforward

analysis subject to the aforementioned assumptions. A sketch of

the derivation follows. From model (1), it holds that ek (i) =
uk,iw̃k,i−1 + vk (i). The nonlinearities tanh (bek (i)), b =
1, . . . , Bk, are expanded around 0 using the corresponding Tay-

lor series. The binomial theorem is then used to expand the resulting

powers of ek (i), discarding powers of uk,iw̃k,i−1 higher than 2,
which are negligible under (A1) towards steady-state (cf. [9, 10]).

For comparison, the LMS-based algorithm uses the following

recursion [2]:

RA=I
w̃k,i

=
[

IM − µku
T
k,iuk,i

]

RA=I
w̃k,i−1

[

IM − µku
T
k,iuk,i

]

+ µ2
kσ

2
v,ku

T
k,iuk,i, RA=I

w̃k,−1
= 0. (33)

The correction factor g−
1

2 accounts for the gain incurred by the

diffusion process and can be estimated offline (cf. [2]).

5. SIMULATIONS

We consider a network of N = 30 nodes, seeking to detect a unit-

norm signal vector ws of sizeM = 2. We compare the worst-case

detection and false-alarm performance over time of the ATC diffu-

sion LMS-based detection algorithm of [2] and the robust counter-

part developed in this work. The regressors uk,i and noise sam-

ples vk (i) are drawn independently across time and space and iden-

tically distributed across time: the regressors from a multivariate

zero-mean Gaussian distribution with covariances Ru,k, with the

same set maintained throughout the experiments; and the noise sam-

ples according to an ε-contaminated Gaussian mixture model with

pdf fvk
(vk) = (1− ε)N

(

0, σ̄2
v,k

)

+ εN
(

0, κσ̄2
v,k

)

, where σ̄2
v,k

are the nominal noise variances, ε is the contamination ratio, and

κ ≫ 1. Herein, κ is set to 10. The network topology, regressor

covariance traces and nominal noise variances are shown in Fig. 1,
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Fig. 2. Worst-case (a) detection performance (b) false-alarm perfor-

mance of diffusion LMS-based detection (black) and robust diffu-

sion detection (red) for different contamination ratios, ε.

depicting a scenario of low signal-to-noise ratio. The weighting co-

efficients al,k are chosen according to the relative-degree rule, i.e.,

al,k = nl/Σm∈Nk
nm. The target false-alarm probabilities Pf,k,i

are set to 10−2 for every node k and time instant i. The factor g
was estimated offline and set to 4. The step-sizes µk are set to be

the same across the nodes, but selected uniquely for each algorithm

in such a way as to equalize their convergence rates for the case of

no contamination (ε = 0) for fair comparison: µdLMS = 0.025 and

µrob = 0.09. For the robust algorithm, we consider two basis func-

tions, i.e., Bk = B = 2, for all k. The initial estimates of the basis

weights, αk,−1, are set to
1
B
1, and λk to 10−2 for every node k. For

the smoothing recursions, zero initial conditions are assumed, and

νk is set to 0.9 for every node k. Finally, ǫ is set to 10−6. All simu-

lation results are obtained by averaging over 10,000 experiments.

In Fig. 2, the resulting worst-case performance of both algo-

rithms is displayed for various degrees of contamination. The su-

periority of the robust algorithm is evident, insensitive as it is to

noise impulsiveness. Moreover, the robustness of the algorithm fig-

ures prominently with respect to the false-alarm performance, since

it is only the robust algorithm that meets the target false-alarm prob-

ability over time in the worst case.
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