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ABSTRACT
In the proposed model of adaptive filtering network, distributed
learning algorithm works cooperatively to identify separated un-
known systems, which have different impulse responses. Specifi-
cally, JS-CoLMS algorithm is proposed to iteratively learn the un-
known systems and the joint sparsity, based on a stochastic gradient
approach and a subdifferentiable sparse-inducing penalty approx-
imating the l2,0 norm. The superior performance of the proposed
algorithm and its relation to l0-LMS and Leaky LMS are briefly
discussed and verified by numerical experiments.

Index Terms— Distributed learning, adaptive filtering network,
joint sparsity, Collaborative LMS, l0-LMS, JS-CoLMS, Leaky LMS,
l2,0 norm, distributed optimization.

1. ADAPTIVE FILTERING NETWORK

We consider a network of M nodes, denoted as {Nm}Mm=1, which
are connected by directed edges. Supposing each node corresponds
to an unknown system, the task is to learn “online” the coefficients
of these systems utilizing their driven signals {xm(n)}Mm=1 and out-
puts {dm(n)}Mm=1, where n denotes the time instant. For this pur-
pose, we will develop a distributed online learning algorithm, termed
collaborative least mean squares (CoLMS). Assuming that each sys-
tem can be represented by an L-order linear finite impulse response
filter, one has

dm(n) = hT
mxm(n) + vm(n), ∀m = 1, 2, · · · ,M,

where

hm = [h0,m, h1,m, · · · , hL−1,m]T ,

xm(n) = [xm(n), xm(n− 1), · · · , xm(n− L+ 1)]T ,

and vm(n) denote, respectively, the unknown system response, the
training vector, and the additive measurement noise. For online esti-
mation of the system coefficients {hm}Mm=1, gradient descent-based
adaptive filtering algorithms are quite competitive for their low com-
putational complexity, robustness, and easy implementation.

In the absence of any prior knowledge regarding these unknown
systems, this problem may fall into the traditional study of adaptive
filter, which has been thoroughly investigated in numerous litera-
tures. However, when there exists certain prior information, we may
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adapt the filters in a collaborative manner to improve the overall per-
formance. In this paper, we will focus on an important case of joint
sparsity, meaning that the support set of each system response is
identical.

As far as we know, using adaptive filtering network to learn
distributed and heterogeneous systems, based on joint sparsity or
other priors, has not been considered in literatures. However, un-
der the assumption that the unknown systems are exactly identical,
i.e., hm ≡ h1 for all m, there were comprehensive and solid works,
including incremental LMS [1, 2], incremental RLS [1], diffusion
RLS [3, 4], and diffusion LMS [1, 5]. The later has been exhaus-
tively studied from various aspects, including information exchange
methods [6], fundamental limits [7], and sparse constraint [8]. It
should be noticed that joint sparsity has been imposed and studied
in the area of Distributed Compressive Sensing [9, 10], array signal
processing [11], and wideband ADC [12]. Their motivations purport
that the distributed learning under the joint sparsity assumption is an
important subject of study.

In the next section, we will formulate the mentioned learning
task into a centralized optimization problem, and will propose a new
adaptive algorithm for its solution. In section 3, we will show that
the proposed algorithm can be implemented in a distributed manner
over networked adaptive filters.

2. COLLABORATIVE LMS EXPLORING JOINT
SPARSITY (JS-COLMS)

Recall that our purpose is to estimate the responses of the M
unknown systems with the tap-weights of M adaptive filters,
wm = [w0,m, w1,m, · · · , wL−1,m]T ,m = 1, 2, · · · ,M , which
can be combined as

W =

⎡

⎢⎢⎢⎣

w0,1 w0,2 · · · w0,M

w1,1 w1,2 · · · w1,M

...
...

. . .
...

wL−1,1 wL−1,2 · · · wL−1,M

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

w̄T
0

w̄T
1

...
w̄T

L−1

⎤

⎥⎥⎥⎦
,

where w̄k = [wk,1, wk,2, · · · , wk,M ]T , k = 0, 1, · · · , L − 1, is a
vector composed of the kth tap-weights of all the M filters.

Let us begin by taking a centralized optimization viewpoint. Un-
der the joint sparsity assumption, one may expect that zeros domi-
nate the set of {∥w̄k∥2}L−1

k=0 , where the l2 norm is used to merge the
coefficients at the same position of all filters into a single quantity.
As a result, the level of joint sparsity of the filters can be character-
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ized by the l2,0 norm of W, which is defined as

∥W∥2,0 =
∥∥∥
[
∥w̄0∥2 , ∥w̄1∥2 , · · · , ∥w̄L−1∥2

]T∥∥∥
0

where ∥ ·∥0 denotes the number of nonzero entries of a given vector.
We formulate the learning problem of jointly sparse systems as a
regularized optimization problem,

min
W

(
ξ(W) =

M∑

m=1

E
{
|em|2

}
+ γ∥W∥2,0

)
, (1)

where
em = dm −wT

mxm (2)

is the estimation error at node Nm, the expectation E{·} is taken
over the steady-state distribution of the process {xm(n)}n, and γ is
a positive scalar to balance the sparsity penalty and the estimation
error.

We attempt to solve problem (1) using a gradient descent method
of the form

W(n+ 1) = W(n)− µ
2
∇ξ(W(n)), (3)

where µ > 0 denotes the stepsize. However, this does not work for
two reasons: (i) the l2,0 norm is discontinuous so that its gradient
does not exist; and (ii) the expectation in (1) is difficult to compute.
To make this approach practicable, we approximate the l2,0 norm by
using a subdifferentiable function as

∥W∥2,0 ≈ J(W) =
L−1∑

k=0

F (∥w̄k∥2) , (4)

where we choose a kind of F (see [13]) such that its subgradient
takes the form

fα(t) =

{ √
Mα

(
1− αt/

√
M
)

0 < t <
√
M/α;

0 elsewhere,
(5)

and α is a positive parameter to control the accuracy of approxima-
tion. Note from (5) that the active region and strength of fα(·) is
zoomed in

√
M times, compared to [13], to counteract the impact

of network size on parameter α. Consequently we approximate the
subgradient of the approximate l2,0 norm of (4) by

∂J(W)
∂wk,m

≈ fα (∥w̄k∥2)wk,m

∥w̄k∥2 + δ
, (6)

where δ is a small positive quantity to avoid dividing zero. To deal
with the second difficulty, we apply the stochastic gradient idea, i.e.,
to replace the expectation E{|em|2} in (1) with its transient sample
|em(n)|2 at time n. By using (6) and the sample gradient, one may
modify (3) to derive the learning recursion of the kth tap-weight at
node Nm as

wk,m(n+ 1) =

(
1− κfα (∥w̄k(n)∥2)

∥w̄k(n)∥2 + δ

)
wk,m(n)

+ µem(n)xm(n− k), (7)

where κ = µγ/2 is the stepsize for zero-point attraction [13]. The
detailed JS-CoLMS algorithm is given in TABLE 1.

Table 1. The Procedure of JS-CoLMS.
Input: {xm(n), dm(n)}Mm=1 , µ,κ;
Initialization: {wm(0) = 0}Mm=1, δ = 1E−10;
Output: {wm(n)}Mm=1.
For n = 0, 1, 2, · · ·

1) Filtering and estimation:
Calculate {em(n)}Mm=1 by (2);

2) Adaptation:
Calculate {wm(n+ 1)}Mm=1 by (7);

End

3. DISTRIBUTED IMPLEMENTATION OF JS-COLMS

JS-CoLMS in TABLE 1 works in a centralized way. However, it
could be readily modified to a distributed implementation. Accord-
ing to (7), the adaptation of each tap-weight consists of two steps,
namely the stochastic gradient descent and the zero-point attraction.
Taking the example of node Nm, the gradient descent could be per-
formed first to utilize the newly acquired training data and yield a
temporary tap-weight vector um(n), which will then be commu-
nicated to the neighboring node for collaboration. Simultaneously,
Nm will also receive the temporary tap-weights from its collabora-
tors. After the information exchange process, Nm could calculate
the zero-point attraction by utilizing the collaborative information.
Finally the tap-weight wm(n+ 1) is prepared for the next iteration.
Distributed implementation of JS-CoLMS is described in detail in
TABLE 2.

4. DISCUSSIONS

We will briefly discuss the performance gain of the proposed algo-
rithm and its relation to existing reference algorithms. Further theo-
retical analysis is beyond the scope of the current paper.

JS-CoLMS will degenerate to standard l0-LMS [13] when there
is no collaboration,

wk,m(n+ 1) = wk,m(n) + µem(n)xm(n− k)− κfα(wk,m(n)).
(8)

The faster convergence of (8) as compared to LMS is due to the zero-
point attraction κfα(wk,m(n)), which additionally drags small coef-
ficients to null. By the nature of LMS, the transient tap-weight con-
tains strong stochastic gradient noise, especially before the steady
state is arrived. Compared to l0-LMS, the proposed JS-CoLMS
synthesizes collaborators’ information, ∥w̄k(n)∥2, to yield a better
attracting performance by exploiting the joint sparsity. Therefore,
the latter could produce faster convergence rate and reach smaller
steady-state deviation with the same control parameters as the for-
mer. It could be further speculated that as the number of collabo-
rators increases, the performance improvement will monotonically
approach an upper bound.

As to its distributed implementation, when there is no collabora-
tion, JS-CoLMS degenerates to a form of l0-LMS where the gradi-
ent descent and zero-point attraction are performed in two successive
steps rather than simultaneously.

One important reason that we formulate JS-CoLMS in a one-
step recursion of (7) is to hint its relation with a variable Leaky
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Table 2. Distributed Implementation of JS-CoLMS at Node Nm.

Input: xm(n), dm(n), µ,κ,
Cm = {m′|Nm′ consumes information fromNm},
Pm = {m} ∪ {m′|Nm′ provides information toNm};

Initialization: wm(0) = 0, δ = 1E − 10;
Output: wm(n).
For n = 0, 1, 2, · · ·

1) Filtering and estimation:
em(n) = dm(n)−wT

m(n)xm(n);
2) Adaptation of gradient descent:

um(n) = wm(n) + µem(n)xm(n);
3) Information exchange with collaborators:

Send um(n) to Nm′ , ∀m′ ∈ Cm;
Receive um′(n) from Nm′ , ∀m′ ∈ Pm \ {m};

4) Adaptation of zero-point attraction:
For k = 0, 1, · · · , L− 1

t =

⎛

⎝
∑

m′∈Pm

|uk,m′(n)|2
⎞

⎠
1/2

;

fα=

{√
|Pm|α

(
1−αt/

√
|Pm|

)
0<t <

√
|Pm|/α;

0 elsewhere;

wk,m(n+ 1) =

(
1− κfα

t+ δ

)
uk,m(n);

End
End

LMS[14]. Actually, (7) readily reminds us

wk(n+ 1) = (1− µβ(n))wk(n) + µe(n)x(n− k),

where β(n) = fα (∥w̄k(n)∥2) / (∥w̄k(n)∥2 + δ) denotes a time-
varying leaky parameter. Therefore, our previous discussion on the
robustness of JS-CoLMS is consistent with the feature of variable
Leaky LMS, i.e., to improve stability in a finite-precision implemen-
tation, · · · , and reduce undesirable effects like stalling, bursting,
etc[14].

5. NUMERICAL SIMULATION

In this section, the proposed Collaborative LMS is tested in several
scenarios of jointly-sparse-system identification. 1 For comparison,
the algorithms to be simulated include traditional LMS, l0-LMS[13],
centralized and distributed JS-CoLMS.

The first experiment demonstrates the performance gain of JS-
CoLMS from utilizing joint sparsity, based on a fully connected 6-
node network. JS-CoLMS works on all nodes collaboratively, where
the reference algorithms work individually on each node. The dis-
tributed unknown systems are driven by independent white Gaussian
signals. Uncorrelated additive white Gaussian noises are available
on all system outputs with an identical signal-to-noise ratio of 20dB.

1The code for these experiments is available at
http://gu.ee.tsinghua.edu.cn/publications#gu1
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Fig. 1. The learning curves of various algorithms in the first experi-
ment, where the network is composed of 6 fully connected nodes,
whose corresponding unknown systems are with joint sparsity of
64/128.

The six 128-order system responses share the same nonzero coef-
ficients support set, which is randomly chosen among all possible
choices and has a cardinality of 64; each nonzero coefficient is ran-
domly generated by standard Gaussian distribution. The algorithm
parameters are set as: µ = 1/128, α = 10, and κ = 2E − 4. The
relative mean squared deviation from 100 independent learning trails
is calculated and plotted in Fig. 1. Note that for each algorithm there
is a bundle of 6 learning curves corresponding to the 6 nodes. As can
be seen from Fig. 1, joint sparsity is helpful in reducing the steady-
state error while maintaining fast convergence rate. Also note that
the performances of distributed and centralized JS-CoLMS are quite
close to each other, so in what follows we only experiment with the
distributed version.

The second experiment studies the relation between the number
of collaborators and the performance gain of collaborative LMS. The
setup and all algorithms’ parameters are the same as the first exper-
iment, except that we vary the network size M from 1 to 10. Then
the statistics, including mean and deviation, of relative squared de-
viation are plotted with respect to M in Fig. 2. According to Fig. 2,
collaborators more than 4 improve little performance. On the other
hand, one may be happy to recognize that a few collaborators are
sufficient to produce a rather good steady-state performance.

Our third experiment studies how the level of joint sparsity af-
fects the performance of JS-CoLMS. We use the same simulation
settings and parameters as in the first experiment, except that we
vary the number of nonzero coefficients to 8, 16, 32, 64, and 128.
The steady-state statistics of the tested algorithms with respect to dif-
ferent sparsity levels are plotted in Fig. 3. As has been conjectured,
JS-CoLMS yields consistently better performance than l0-LMS, es-
pecially when the number of nonzero entries is small.

Our last experiment is to imitate a realistic scenario. Sup-
pose in a unit square area there are 1000 nodes with coordinates
{(im, jm)}1000m=1, im, jm ∈ (0, 1). The kth unknown coefficient
corresponding to Nm is generated by

hk,m

{
∼ N (0, 1), k = 0, 1, · · · , 31 + 96im;
= 0, elsewhere.

The collaborative relation between Nm and Nm′ is determined by

m′ ∈ Pm

m ∈ Cm′

}
if
{

dist(m,m′) ≤ 0.063
√
jm

and im′ ≤ im,
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Fig. 2. The statistics of the steady-state square deviation of various
algorithms in the second experiment, with respect to the number of
collaborators, while the unknown joint sparsity is 64/128.
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Fig. 3. The steady-state statistics in the third experiment, with re-
spect to different joint sparsity level for a 6-node fully connected
network.

where dist(m,m′) =
√

(im − im′)2 + (jm − jm′)2 denotes the
distance between Nm and Nm′ . One may refer to Fig. 4, where
circle-symbols denote the node and lines denote the directed collab-
orations from left to right. The diameter of circle denotes the num-
ber of nonzero coefficients. After 1000 trials, the steady-state MSD
gains from exploring joint sparsity and their histogram are plotted in
Fig. 5, where blue denotes positive gain and red negative, and Fig.
6, respectively. The results are self-evident that dominant number
of nodes obtain joint sparsity gain and a few collaborators are suffi-
cient to provide a visible improvement on accuracy, which is further
enhanced by the decrease of joint number of nonzero coefficients.

6. CONCLUSION

This paper proposes a framework of adaptive filtering network,
which can be considered as a generalization of distributed learn-
ing from a single system to noisy networked systems. Under this
framework, it proposes an algorithmic realization of constrained
LMS to explore the joint sparsity over a network of separate but
related systems. Numerical experiments have been given to verify
the effectiveness of this distributed algorithm.

Fig. 4. The collaborative relation and the number of nonzero coef-
ficients of respective node (circle) in the fourth experiment, where
the number of nonzero coefficients (the diameter of circle) increases
from left side to right side and the number of collaborators (the num-
ber of connected nodes at one’s left side) increases from bottom side
to top side.

Fig. 5. The gain of learning accuracy, i.e, JS-CoLMS exceeds l0-
LMS, of respective nodes in the fourth experiment, where blue and
red denote positive and negative gain, respectively.
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Fig. 6. The histogram of learning accuracy gain in the fourth exper-
iment.
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