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ABSTRACT

A distributed adaptive algorithm is proposed to solve a node-
specific parameter estimation problem where nodes are interested
in estimating parameters of local interest and parameters of global
interest to the whole network. To address the different node-specific
parameter estimation problems, this novel algorithm relies on a
diffusion-based implementation of different Least Mean Squares
(LMS) algorithms, each associated with the estimation of a specific
set of local or global parameters. Although all the different LMS
algorithms are coupled, the diffusion-based implementation of each
LMS algorithm is exclusively undertaken by the nodes of the net-
work interested in a specific set of local or global parameters. To
illustrate the effectiveness of the proposed technique we provide
simulation results in the context of cooperative spectrum sensing in
cognitive radio networks.

Index Terms— Adaptive distributed networks, diffusion algo-
rithm, cooperation, node-specific parameter estimation.

1. INTRODUCTION

Two major groups of energy aware and low-complex distributed
strategies for estimation over networks have been studied in the
literature, i.e., consensus strategies and the algorithms based on in-
cremental or diffusion mode of cooperation. In some initial works,
for instance [1], the implementation of the consensus strategy is
done in two stages. Unfortunately, this kind of implementation is
not suitable for real time estimation as required in time-varying en-
vironments. Subsequently, motivated by the procedure obtained in
[2], alternative implementations of the consensus strategy were pre-
sented in the literature (e.g., [3]-[4]) which force agreement among
the cooperating nodes in a single time-scale. The second group,
which is in the focus of this paper, consists of a single time-scale
distributed estimation algorithms that are based on distributing a
specific stochastic gradient method under an incremental or a diffu-
sion mode of cooperation. In the incremental mode (e.g., [5]-[6]),
each node communicates with only one neighbor, and consequently
the data are processed in a cyclic manner throughout the network.
Better reliability can be achieved at the expense of increased en-
ergy consumption in the so-called diffusion mode considered, for
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instance, in [7]-[9]. Under this strategy, each node can communicate
with a subset of neighboring nodes.

Although there are many published techniques addressing differ-
ent distributed estimation problems, only very few papers consider
node-specific settings where the nodes have overlapped but different
estimation interests. In the signal estimation case, for networks with
a fully connected and tree topology, Bertrand et al. proposed dis-
tributed algorithms that allow to estimate node-specific desired sig-
nals sharing a common latent signal subspace ([10]-[11]). Regard-
ing the parameter estimation case, there are also a few recent works
addressing problems which can be considered as Node-Specific Pa-
rameter Estimation (NSPE) problems. The consensus approach pre-
sented in [12] is based on optimization techniques that force different
nodes to reach an agreement when estimating parameters of common
interest. In the case of schemes based on a distributed implementa-
tion of adaptive filtering techniques, the literature is less extensive.
In one of these works [13], the authors use diffusion adaption and
scalarization techniques to solve the multi-objective cost function
that appears in a NSPE problem and obtain a Pareto-optimal solu-
tion. A diffusion strategy with an adaptive combination rule pro-
posed in [14] is suitable for clustering nodes in a network that are
interested in different objectives. Consequently, it actually limits
cooperation only to the nodes having exactly the same objectives.
In [15], the authors assume a NSPE setting, however, the different
parameters to be estimated using diffusion strategy are expressed
through the same global parameter. In previous works [16] and [17],
we formulated a novel NSPE problem where all nodes are interested
in estimating simultaneously some parameters of local interest as
well as some parameters of global interest. We solved it by em-
ploying incremental-based strategies for Least Mean Squares (LMS)
and Recursive Least Squares (RLS) algorithms. Motivated by the
well-known robustness and learning abilities of the diffusion-based
solutions, in this work we present a LMS strategy to solve the afore-
mentioned NSPE problem under two different versions of the dif-
fusion mode of cooperation, Combine-then-Adapt and Adapt-then-
Combine. Finally, we verify the effectiveness of both techniques
through an illustrative application for power spectrum sensing in
cognitive radio.

The following notation is used throughout the paper. We use
boldface letters for random variables and normal fonts for deter-
ministic quantities. Capital letters refer to matrices and small let-
ters refer to both vectors and scalars. The notation (·)H and E{·}
stand for the Hermitian transposition and the expectation operator,
respectively. Moreover, RA = E{AHA}, RA,B = E{AHB}
and rA,b = E{AHb} for any random matrices A, B and any ran-
dom vector b. Finally, ‖ · ‖ denotes the Euclidean norm and 0L×M
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Fig. 1. A network of N nodes with node-specific parameter estima-
tion interests.

represents a L×M zero matrix.

2. PROBLEM STATEMENT

Let us consider a connected network consisting of N nodes ( Fig.1).
Hence, allowing each node to communicate with its neighbors, at
each time instant there is always a path between any two pairs of
nodes of the network. As shown in Fig. 1, the neighborhood of a
node k at a specific time instant i, Nk,i, consists of the nodes linked
to it, including node k itself.

At discrete time i, each node k has access to data {dk,i, Uk,i},
corresponding to time realizations of zero-mean random processes
{dk,i,Uk,i}, with dimensions Lk × 1 and Lk × Mk, respectively.
These data are related to events that take place in the network area
through the subsequent model

dk,i = Uk,iw
o
k + vk,i (1)

where, for each time instant i, wo
k equals the Mk × 1 vector that

gathers all parameters of interest for node k and vk,i denotes mea-
surement and/or model noise with zero mean and covariance matrix
Rvk,i of dimensions Lk × Lk.

Given the previous observation model and the data set {dk,i, Uk,i},
the objective is to find the set of linear node-specific estimators
{wk}Nk=1 that minimize the following global cost function

Jglob({wk}Nk=1) =

N∑
k=1

E
{‖dk,i −Uk,iwk‖2

}
. (2)

In most of the existing papers, e.g., [5]-[9], the derived adaptation
strategies minimize (2) when wo

k = wo for all k ∈ {1, 2, . . . , N}.
In this work, we consider the novel node-specific parameter setting
addressed in [16] and [17], which goes one step further by consid-
ering a more general scenario where the parameters of interest can
differ from one node to another. As shown in Fig. 1, each vector
{wo

k}Nk=1 might consist of parameters of global interest to the whole
network and parameters of local interest for node k. In particular,
the global parameters might be related to a phenomenon making an
impact on all the nodes, while the parameters of local interest may
reflect an influence of some phenomena that are only present over
the area monitored by one node of the network. Therefore, we can
rewrite the observation model in (1), for each node k, as

dk,i = Ukg ,iw
o +Ukl,iξ

o
k + v

(i)
k

(3)

where sub-vectors wo (Mg × 1) and ξok (Mkl × 1) gather the param-
eters of global and local interest, respectively. Furthermore, Ukg,i

and Ukl,i are matrices of dimensions Lk ×Mg and Lk ×Mkl that

consist of the columns Uk,i associated with wo and ξok, respectively.
Thus, according to (2) and (3), our NSPE problem can be cast as
minimizing

N∑
k=1

E
{‖dk,i −Ukg ,iw −Ukl,iξk‖2

}
. (4)

with respect to w and {ξk}Nk=1. In the following section, we write
the centralized solution to (4) and later, approximate it in a dis-
tributed manner via diffusion-based approach.

3. DIFFUSION-BASED LMS FOR THE NSPE PROBLEM

For simplicity and without losing generality, let us assume that
Mk = M , Mkl = Ml and Lk = L for all k ∈ {1, 2, . . . , N}.
From [16], we know that the our NSPE problem can be cast as

̂̃w = argmin
w̃

{
N∑

k=1

E
{
‖dk,i − Ũk,iw̃‖2

}}
(5)

where

w̃ =
[
wT ξT1 ξT2 · · · ξTN

]T
( M̃ × 1 ) (6)

and

Ũk,i =
[
Ukg ,i 0L×Ma Ukl,i 0L×Mb

]
(7)

where Ma = (k − 1)Ml, Mb = (N − k)Ml and M̃ = Mg +

N · Ml. Thus, the resulting solutions ̂̃w are given by the normal
equations [18], i.e.,(

N∑
k=1

R
˜Uk,i

)
· ̂̃w =

N∑
k=1

r
˜Uk,idk,i

. (8)

With the aim of improving energy efficiency, robustness and
scalability of the centralized approach, it is highly desirable to de-
sign a distributed and adaptive scheme that allows each node to solve
its NSPE problem. In case that wo

k = wo, diffusion strategies,
e.g., Combine-then-Adapt (CTA) and Adapt-then-Combine (ATC),
are known to well approximate the corresponding centralized solu-
tion by relying solely on information available at each node from its
neighborhood [7]. In this work, we extend these strategies so as to
be applicable in the NSPE case.

To start with the derivation of the algorithm, let us define ψ̃
(i)
k as

the local estimate of w̃o at time instant i and node k. Note that this
local estimate is generally a noisy version of the optimal augmented
vector w̃o. By employing a diffusion mode of cooperation, each
node k, at each time instant i − 1, has access to the set of local
estimates from its neighborhood, i.e., Nk,i−1. Hence, node k can
fuse its local estimate with the local estimates of its neighbors, at
each time instant i− 1, through a linear combiner as follows

φ̃
(i−1)
k =

∑
j∈Nk,i−1

C̃k,j ψ̃
(i−1)
j (9)

where

C̃k,j = diag{cwk,jIMg , c
ξ1
k,jIMl , . . . , c

ξN
k,jIMl}. (10)

In (10), cwk,j equals the weight coefficient used by node k when com-
bining the local estimate of the global vector wo from node j. Simi-
larly, cξmk,j denotes the combination coefficients employed by node k
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when fusing the local estimates of ξom, where m ∈ {1, 2, . . . , N},
from node j with its local estimates, respectively.

To determine the combination coefficients at each node k, we
can interpret (9) as a weighted least squares estimate of the aug-
mented vector of parameters w̃o given its local estimate as well as
the local estimates from the neighbor nodes [19]. This way, by col-
lecting the local estimates of w̃o in the neighborhood of node k

ψ̃Nk,i−1 = col
{
{ψ̃(i−1)

j }j∈Nk,i−1

}
(11)

and defining

Qk,i−1 = col{I
˜M , I

˜M , . . . , I
˜M} (nk,i−1 · M̃ × M̃) (12)

and C̃k = diag{C̃k,1, C̃k,2, . . . , C̃k,nk,i−1} with nk,i−1 = |Nk,i−1|,
we can formulate the subsequent local weighted least-squares prob-
lem

argmin
φ̃k

{
‖ψ̃Nk,i−1 −Qk,i−1φ̃k‖2

˜Ck

}
, (13)

whose solution is given by

φ̃
(i−1)
k =

[
QT

k,i−1C̃kQk,i−1

]−1

QT
k,i−1C̃kψ̃Nk,i−1 . (14)

More precisely, focusing on the different subvectors that form

φ̃
(i−1)
k , the solution provided in (14) can be rewritten as

φ
(i−1)
k,w =

∑
j∈Nk,i−1

cwk,j∑
�∈Nk,i−1

cwk,�
ψ

(i−1)
j,w (15)

and

φ
(i−1)
k,ξm

=
∑

j∈Nk,i−1

cξmk,j∑
�∈Nk,i−1

cξmk,�
ψ

(i−1)
j,ξm (16)

where, for k, j,m ∈ {1, 2, . . . , N}, φ
(i−1)
k,w and φ

(i−1)
k,ξm

denote the

subvectors of combiner φ̃
(i−1)
k associated with the local estimation

of wo and ξm at node k and time instant i − 1, respectively. Anal-

ogously, ψ
(i−1)
j,w and ψ

(i−1)
j,ξm

denote the subvectors of local estimate

ψ̃
(i−1)
j associated with the local estimation of wo and ξom at node j

and time instant i− 1, respectively.
At this point, after a suitable re-writing of the combination co-

efficients that appear in (15) and (16), we can verify that the combi-
nation coefficients in (9) and (10) have to satisfy

cwk,j = 0 if j /∈ Nk,i−1;
∑

j∈Nk,i−1

cwk,j = 1
(17)

and

cξmk,j = 0 if j /∈ Nk,i−1;
∑

j∈Nk,i−1

cξmk,j = 1
(18)

for k,m ∈ {1, 2, . . . , N}.
Next, in order to have an adaptive estimation of w̃o at each node

k, we include the corresponding local aggregate estimate φ̃
(i−1)
k into

the local LMS-type adaptive algorithm, at each node k. Therefore,
the resulting diffusion-based strategy can be described as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Combination step:

φ̃
(i−1)
k =

∑
j∈Nk,i−1

C̃k,j ψ̃
(i−1)
j

Adaptation step:

ψ̃
(i)
k = φ̃

(i−1)
k − μkŨ

H
k,i

[
dk,i − Ũk,i φ̃

(i−1)
k

] (19)

with i ≥ 1, {ψ̃(0)
j }j∈Nk,0 equal to some initial guesses, C̃k,j defined

in (10) and μk > 0 is a suitably chosen positive step-size parameter.

Due to the structure of the augmented regressors Ũk,i defined
in (7), a careful analysis of (19) reveals that, only 2 sub-vectors of

ψ̃
(i)
k are updated at each time instant i, when a specific node k per-

forms the adaptation step of (19). In particular, according to (6)
and (7), only the sub-vectors associated with the local estimates

of wo and ξok at node k and time i, denoted as ψ
(i)
k = ψ

(i)
k,w and

ξ
(i)
k = ψ

(i)
k,ξk

, respectively, are updated based on the measurements

{dk,i, Uk,i} and the corresponding aggregate estimates at time i−1,

i.e., φ
(i−1)
k,w and φ

(i−1)
k,ξk

. The previous fact allows to set the subse-
quent equalities in the combination coefficients

cξmk,j = 0 if k �= j or k �= m. (20)

These equalities together with (18) show that c
ξk
k,k = 1 for each node

k. Hence, a node k does not essentially cooperate with any other
node when estimating its vector of local parameters ξok. This is due
to the fact that no other node j performs measurements where the
vector ξk is involved. Finally, we obtain the Combine-then-Adapt
(CTA) diffusion-based LMS algorithm summarized below

CTA Diffusion-based LMS for NSPE (CTA D-NSPE)

• Start with some random guesses ψ
(0)
k and ξ

(0)
k at each node

k ∈ {1, 2, . . . , N} .

• Choose a N ×N combination matrix Cw whose elements in
each row k, i.e., {cwk,j}Nj=1, satisfy (17).

• At each time i, for each k ∈ {1, 2, . . . , N}, execute

- Combination step:

φ
(i−1)
k,w =

∑
j∈Nk,i−1

cwk,j ψ
(i−1)
j (21)

- Adaptation step:[
ψ

(i)
k

ξ
(i)
k

]
=

[
φ
(i−1)
k,w

ξ
(i−1)
k

]
+ μk U

H
k,i

[
dk,i − Uk,i

[
φ
(i−1)
k,w

ξ
(i−1)
k

]]
(22)

Now, let us consider that each node k firstly performs the adap-
tation step and afterwards, it solves its local weighted least squares
problem given in (13). Then, by following a derivation that is anal-
ogous to the one undertaken for the CTA D-NSPE scheme and that
has been omitted for the sake of brevity, we can obtain the subse-
quent Adapt-then-Combine (ATC) diffusion-based LMS algorithm.

ATC Diffusion-based LMS for NSPE (ATC D-NSPE)

• Start with some random guesses φ
(0)
k,w and ξ

(0)
k at each node

k ∈ {1, 2, . . . , N} .

• Choose a N ×N combination matrix Cw whose elements in
each row k, i.e. {cwk,j}Nj=1, satisfy (17).

• At each time i, for each k ∈ {1, 2, . . . , N}, execute

- Adaptation step:[
ψ

(i)
k

ξ
(i)
k

]
=

[
φ
(i−1)
k,w

ξ
(i−1)
k

]
+ μk U

H
k,i

[
dk,i − Uk,i

[
φ
(i−1)
k,w

ξ
(i−1)
k

]]
(23)
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- Combination step:

φ
(i)
k,w =

∑
j∈Nk,i

cwk,j ψ
(i)
j (24)

Both diffusion-based NSPE algorithms are scalable in terms of
computational burden and energy resources. On the one hand, re-
garding the computational complexity, at each time instant, each
node k only needs to update 3 vectors whose dimensions are in-
dependent of the number of nodes. According to (21)-(24), these

vectors are φ
(i−1)
k,w , ψ

(i)
k and ξ

(i)
k , consequently, a total of 2Mg+Ml

parameters are updated at node k and any time instant i. On the other
hand, at each time instant i, each node k is required to transmit one

vector, ψ
(i)
k , whose dimensions are again independent of the number

of nodes.
Remark on convergence: Let us comment briefly on the con-

vergence in the mean of the two schemes. Assume that the com-
bination matrix C consists of N × N blocks, where each block
C(k, j) = diag{cwk,jIMg , c

ξk
k,jIMl}, and where the coefficients cwk,j

c
ξk
k,j satisfy (17), (18) and (20), i.e, C1 = 1. Furthermore, if every

stepsize μk satisfies 0 < μk < 2/λmax{RUk,i}, where λmax{A}
equals the maximum eigenvalue of the positive definite matrix A,

then every local estimate at time instant i, i.e., col{ψ(i)
k , ξ

(i)
k }, gener-

ated by the CTA (or ATC) diffusion NSPE LMS algorithm converges
in the mean to the optimal parameter wo

k.

4. SIMULATIONS

At this point, we will compare the LMS-based ATC D-NSPE and
CTA D-NSPE schemes with an LMS-based non-cooperative strat-
egy, in a scenario of cooperative spectrum sensing in cognitive ra-
dio network (see [16]). We emphasize that we do not compare our
schemes with the diffusion strategies designed for a scenario where
wo

k = wo for all k ∈ {1, 2, . . . , N}. Note that the comparison
would not be fair since the latter strategies, e.g., [7], were not de-
signed to estimate parameters of local interest.

Assume an environment shared by Q primary users (PU) and
N secondary users (SU). In addition to PUs, for each SU we also
assume a different local interference (LI) source. The goal for each
SU is to estimate the aggregated spectrum transmitted by all the PUs
and its own LI. Each node k, at time i, takes a set of measurements
of the received power spectral density (PSD) over L frequency sam-
ples {fm}Lm=1, based on a basis expansion model that yields the
following linear vector model [20], [21, Section 2.4]:

dk,i = Uk,iw̄
o
k + vk,i (25)

where dk,i is the measurement vector and vk,i denotes noise with
zero mean and covariance matrix Rvk,i of dimension L × L. The

observation matrix relative to node k is Uk,i =
[
bTk,i(fm)

]L
m=1

,
of dimensions L × (Q + 1)J with L > (Q + 1)J , whose rows
are the evaluation of basis functions at frequency fm. The overall
coefficient vector w̄o

k = col
{
wo

1, . . . , w
o
Q, ξ

o
k

} ∈ R
(Q+1)J collects

the expansion coefficient vectors of all PUs {wo
q}Qq=1 and one of LI,

i.e., ξok, each of size J .
In Fig. 2, we plot the learning behavior of the three schemes in

terms of the network mean-square deviation (MSD) associated with
the estimation of wo and ξok. Each network MSD is the result of
averaging the local MSDs associated with the estimation of wo and
ξok at each node. To generate each plot, we have averaged the results
over 50 independent experiments where we assumed Q = 2 PUs,
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Fig. 2. Learning behavior of network MSD.

N = 10 SUs and J = 16 Gaussian basis functions. Furthermore,
we have considered that each SU scans L = 80 channels between
30 MHz and 45 MHz. The D-NSPE schemes use a simple averaging
combination rule, where each SU cooperates with its 4 neighbors.
The step-size is the same for all three schemes, i.e., μ = 3 · 10−4 .
Due to the cooperation between the nodes, we observe that the two
proposed schemes outperform the non-cooperative one, especially
when estimating wo. Although there is no exchange of estimates
of ξok throughout the network, the D-NSPE schemes have enhanced
performance in comparison with the non-cooperative strategy. This
is a consequence of the coupling between the two estimation tasks
undertaken by D-NSPE.

5. CONCLUSIONS

We have presented a distributed adaptive algorithm that is suitable
for solving node-specific parameter estimation problems in a net-
work where the estimation interests of each node consist of a set of
local parameters and a set of network global parameters. To do so,
the proposed schemes employ local LMS algorithms allowing each
node to estimate its set of local parameters. Coupled with all these
local estimation processes, the estimation of the parameters of global
interest is undertaken by a diffusion-based LMS that is implemented
by all nodes of the network under a specific formulation, Combine-
then-Adapt or Adapt-then-Combine. To conclude, computer simula-
tions have been provided to show the effectiveness of the proposed
schemes in the context of cooperative spectrum sensing in cognitive
radio networks.
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