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ABSTRACT

We propose a decomposition framework for the parallel optimiza-
tion of the sum of a differentiable function and a (block) separa-
ble nonsmooth, convex one. The latter term is typically used to
enforce structure in the solution as, for example, in LASSO prob-
lems. Our framework is very flexible and includes both fully parallel
Jacobi schemes and Gauss-Seidel (Southwell-type) ones, as well as
virtually all possibilities in between (e.g., gradient- or Newton-type
methods) with only a subset of variables updated at each iteration.
Our theoretical convergence results improve on existing ones, and
numerical results show that the new method compares favorably to
existing algorithms.
Index Terms— Parallel optimization, Jacobi method, LASSO, Sparse

solution.

1. INTRODUCTION

The minimization of the sum of a smooth function, F , and of a non-
smooth (separable) convex one, G,

min
x∈X

V (x) , F (x) +G(x), (1)

is an ubiquitous problem that arises in many fields of engineering, so
diverse as compressed sensing, basis pursuit denoising, sensor net-
works, neuroelectromagnetic imaging, machine learning, data min-
ing, sparse logistic regression, genomics, metereology, tensor factor-
ization and completion, geophysics, and radio astronomy. Usually
the nonsmooth term is used to promote sparsity of the optimal so-
lution, that often corresponds to a parsimonious representation of
some phenomenon at hand. Many of the mentioned applications
can give rise to extremely large problems so that standard optimiza-
tion techniques are hardly applicable. And indeed, recent years have
witnessed a flurry of research activity aimed at developing solution
methods that are simple (for example based solely on matrix/vector
multiplications) but yet capable to converge to a good approximate
solution in reasonable time. It is hardly possible here to even summa-
rize the huge amount of work done in this field; we refer the reader
to the recent works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19] as entry points to the literature.

It is clear however that if one wants to solve really large prob-
lems, parallel methods exploiting the computational power of multi-
core processors have to be employed. It is then surprising that while
serial solutions methods for Problem (1) have been widely investi-
gated, the analysis of parallel algorithms suitable to large-scale im-
plementations lags behind. Gradient-type methods can of course be
easily parallelized. However, beyond that, we are only aware of very
few papers, all very recent, that deal with parallel solution methods
[2, 6, 13, 17]. These papers analyze both randomized and determin-
istic block Coordinate Descent Methods (CDMs) that, essentially,
are still (regularized) gradient-based methods. One advantage of the
analyses in [2, 6, 13, 17] is that they provide an interesting (global)
rate of convergence. On the other hand they apply only to convex
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problems and are not flexible enough to include, among other things,
very natural Jacobi-type methods (where at each iteration a partial
minimization of the original function is performed with respect to a
block variable while all other variables are kept fixed) and the possi-
bility to deal with a nonconvex F .

In this paper, building on the approach proposed in [20, 21], we
present a broad, deterministic algorithmic framework for the solu-
tion of Problem (1) with the following novel features: i) it is paral-
lel, with a degree of parallelism that can be chosen by the user and
that can go from a complete parallelism (each variable is updated in
parallel to all the others) to the sequential (one variable only is up-
dated at each iteration); ii) it can tackle a nonconvex F ; iii) it is very
flexible and includes, among others, updates based on gradient- or
Newton-type methods; and iv) it easily allows for inexact solutions.
Our framework allows us to define different schemes, all converging
under the same conditions, that can accommodate different problem
features and algorithmic requirements. Even in the most studied case
in which F is convex and G(x) ≡ 0 our results compare favourably
to existing ones and the numerical results show our approach to be
very promising.

2. PROBLEM DEFINITION

We consider Problem (1), where the feasible setX = X1×· · ·×XN

is a cartesian product of lower dimensional convex sets Xi ⊆ Rni ,
and x ∈ Rn is partitioned accordingly to x = (x1, . . . ,xN ), with
each xi ∈ Rni . F is smooth (and not necessarily convex) and G
is convex and possibly nondifferentiable, with G(x) = ∑N

i=1gi(xi)
with xi ∈ Xi. This format is very general and includes problems of
great interest. Below we list some instances of Problem (1).
•G(x) = 0; in this case the problem reduces to the minimization of
a smooth, possibly nonconvex problem with convex constraints.
• F (x) = ‖Ax − b‖2 and G(x) = c‖x‖1, X = Rn, with A ∈
Rm×n, b ∈ Rm, and c ∈ R++ given constants; this is the very
famous and much studied LASSO problem [22].
• F (x) = ‖Ax− b‖2 and G(x) = c

∑N
i=1 ‖xi‖2, X = Rn, with

A ∈ Rm×n, b ∈ Rm, and c ∈ R++ given constants; this is the
group LASSO problem [23].
• F (x) =

∑m
j=1 log(1+e−aiy

T
i x) andG(x) = c‖x‖1 (orG(x) =

c
∑N

i=1 ‖xi‖2), with yi ∈ Rn, ai ∈ R, and c ∈ R++ given con-
stants; this is the sparse logistic regression problem [24, 25].
• F (x) =

∑m
j=1 max{0, 1 − aiyT

i x}2 and G(x) = c‖x‖1, with
ai ∈ {−1, 1}, yi ∈ Rn, and c ∈ R++ given; this is the `1-
regularized `2-loss Support Vector Machine problem, see e.g. [18].
• Other problems that can be cast in the form (1) include the Nu-
clear Norm Minimization problem, the Robust Principal Component
Analysis problem, the Sparse Inverse Covariance Selection problem,
the Nonnegative Matrix (or Tensor) Factorization problem, see e.g.
[16, 26] and references therein.

Given (1), we make the following standard, blanket assumptions:
(A1) Each Xi is nonempty, closed, and convex;
(A2) F is C1 on an open set containing X;
(A3) ∇F is Lipschitz continuous on X with constant LF ;
(A4) G(x) =

∑N
i=i gi(xi), with all gi continuous and convex on

Xi;
(A5) V is coercive.
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3. MAIN RESULTS

We want to develop parallel solution methods for Problem (1) whereby
operations can be carried out on some or (possibly) all (block) vari-
ables xi at the same time. The most natural parallel (Jacobi-type)
method one can think of is updating all blocks simultaneously: given
xk, each (block) variable xk+1

i is computed as the solution of minxi

[F (xi,x
k
−i) + gi(xi)] (where x−i denotes the vector obtained from

x by deleting the block xi). Unfortunately this method converges
only under very restrictive conditions [27] that are seldom verified
in practice. To cope with this issue we introduce some “memory"
and set the new point to be a convex combination of xk and the solu-
tions of minxi [F (xi,x

k
−i) + gi(xi)]. However our framework has

many additional features, as discussed next.
Approximating F : Solving each minxi [F (xi,x

k
−i) + gi(xi)] may

be too costly or difficult in some situations. One may then prefer
to approximate this problem, in some suitable sense, in order to fa-
cilitate the task of computing the new iteration. To this end, we
assume that for all i ∈ N , {1, . . . , N} we can define a function
Pi(z;w) : Xi×X → R having the following properties (we denote
by∇Pi the partial gradient of Pi with respect to z):
(P1) Pi(•;w) is convex and continuously differentiable on Xi for

all w ∈ X;
(P2) ∇Pi(xi;x) = ∇xiF (x) for all x ∈ X;
(P3) ∇Pi(z; •) is Lipschitz continuous on X for all z ∈ Xi.

Such a function Pi should be regarded as a (simple) convex ap-
proximation of F at the point x with respect to the block of variables
xi that preserves the first order properties of F with respect to xi.
Based on this approximation we can define at any point xk ∈ X a
regularized approximation h̃i(xi;x

k) of V with respect to xi where
F is replaced by Pi while the nondifferentiable term is preserved,
and a quadratic regularization is added to make the overall approxi-
mation strongly convex. More formally, we have

h̃i(xi;x
k),Pi(xi;x

k)+
τi
2

(
xi − xk

i

)T
Qi(x

k)
(
xi − xk

i

)
︸ ︷︷ ︸

,hi(xi;xk)

+gi(xi),

where Qi(x
k) is an ni × ni positive definite matrix (possibly de-

pendent on xk). We always assume that the functions hi(•,xk
i ) are

uniformly strongly convex.

(A6) All hi(•;xk) are uniformly strongly convex on Xi with a
common positive definiteness constant q > 0; furthermore,
Qi(•) is Lipschitz continuous on X .

Note that an easy and standard way to satisfy A6 is to take, for any i
and for any k, τi = q > 0 and Qi(x

k) = I. However, if Pi(•;xk)
is already uniformly strongly convex, one can avoid the proximal
term and set τi = 0 while satisfying A6.

Associated with each i and point xk ∈ X we can define the
following optimal solution map:

x̂i(x
k, τi) , argmin

xi∈Xi

h̃i(xi;x
k). (2)

Note that x̂i(x
k, τi) is always well-defined, since the optimization

problem in (2) is strongly convex. Given (2), we can then introduce

X 3 y 7→ x̂(y, τ ) , (x̂i(y, τi))
N
i=1 .

The algorithm we are about to described is based on the computation
of x̂. Therefore the approximating functions Pi should lead to as
easily computable functions x̂ as possible. An appropriate choice
depends on the problem at hand and on computational requirements.

We discuss some possible choices for Pi after introducing the main
algorithm (Algorithm 1); see [28] for more details.
Inexact solutions: In many situations (especially in the case of
large-scale problems), it can be useful to further reduce the compu-
tational effort needed to solve the subproblems in (2) by allowing in-
exact computations zk of x̂i(x

k, τi), i.e., ‖zki − x̂i

(
xk, τ

)
‖ ≤ εki ,

where εki measures the accuracy in computing the solution.
Updating only some blocks: Another important feature of our al-
gorithmic framework is the possibility of updating only some of the
variables at each iteration, a feature that has been observed to be
very effective numerically. In fact, our schemes are guaranteed to
converge under the update of only a subset of the variables at each
iteration; the only condition is that such a subset contains at least one
(block) component which is within a factor ρ ∈ (0, 1] “far away”
from the optimality, in the sense explained next. First of all xk

i is
optimal for h̃i(xi;x

k) if and only if x̂i(x
k, τi) = xk

i . Ideally we
would like then to select the indices to update according to the op-
timality measure d k

i , ‖x̂i(x
k, τi) − xk

i ‖ (e.g., opting for blocks
exhibiting larger d k

i ’s); but in some situations this could be compu-
tationally too expensive. Building on the same idea, we can intro-
duce alternative less expensive metrics based on a computationally
cheaper error bound, i.e., a function Ei(x) such that

si‖x̂i(x
k, τi)− xk

i ‖ ≤ Ei(x
k) ≤ s̄i‖x̂i(x

k, τi)− xk
i ‖, (3)

for some 0 < si ≤ s̄i. Of course we can always set Ei(x
k) =

‖x̂i(x
k, τi) − xk

i ‖, but other choices are also possible; we discuss
some of them after introducing the algorithm.

We are now ready to formally introduce our algorithm, Algo-
rithm 1, that enjoys all the features discussed above. Its convergence
properties to stationary solutions1 of (1) are given in Theorem 1,
whose proof is omitted because of space limitation, see [28].

Algorithm 1: Inexact Parallel Algorithm (FLEXA)

Data : {εki } for i ∈ N , τ ≥ 0, {γk} > 0, x0 ∈ X , ρ ∈ (0, 1].
Set k = 0.

(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : For all i ∈ N , solve (2) with accuracy εki :

Find zki ∈ Xi s.t. ‖zki − x̂i

(
xk, τ

)
‖ ≤ εki ;

(S.3) : Set Mk , maxi{Ei(x
k)}.

Choose a set Sk that contains at least one index i
for which Ei(x

k) ≥ ρMk.
Set ẑki = zki for i ∈ Sk and ẑki = xk

i for i 6∈ Sk

(S.4) : Set xk+1 , xk + γk (ẑk − xk);
(S.5) : k ← k + 1, and go to (S.1).

Theorem 1 Let {xk} be the sequence generated by Algorithm 1,
under A1-A6. Suppose that {γk} and {εki } satisfy the following
conditions: i) γk ∈ (0, 1]; ii) γk → 0; iii)

∑
k γ

k = +∞; iv)∑
k

(
γk
)2

< +∞; and v) εki ≤ γkα1 min{α2, 1/‖∇xiF (xk)‖}
for all i ∈ N and some nonnegative constants α1 and α2. Addition-
ally, if inexact solutions are used in Step 2, i.e., εki > 0 for some i
and infinite k, then assume also that G is globally Lipschitz on X .

Then, either Algorithm 1 converges in a finite number of itera-
tions to a stationary solution of (1) or every limit point of {xk} (at
least one such points exists) is a stationary solution of (1).

On Algorithm 1. The proposed algorithm is extremely flexible. We
can always choose Sk = N resulting in the simultaneous update

1We recall that a stationary points x∗ of (1) is a point for which a subgra-
dient ξ ∈ ∂G(x∗) exists such that (∇F (x∗) +ξ)T (y − x∗) ≥ 0 for all
y ∈ X . If F is convex, stationary points coincide with global minimizers.
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of all the (block) variables (full Jacobi scheme); or, at the other ex-
treme, one can update a single (block) variable per time, thus ob-
taining a Gauss-Southwell kind of method. One can also compute
inexact solutions (Step 2) while preserving convergence, provided
that the error term εki and the step-size γk’s are chosen according to
Theorem 1. We emphasize that the Lipschitzianity of G is required
only if x̂(xk, τ) is not computed exactly for infinite iterations. At
any rate this Lipschitz conditions is automatically satisfied if G is
a norm (and therefore in LASSO and group LASSO problems for
example) or if X is bounded.

On the choice of the stepsize γk. An example of step-size rule
satisfying i-iv in Theorem 1 is: given γ0 = 1, let

γk = γk−1
(

1− θ γk−1
)
, k = 1, . . . , (4)

where θ ∈ (0, 1) is a given constant; see [21] for others rules. This
is actually the rule we used in our practical experiments (cf. Sec.
4). Note that while this rule may still require some tuning for opti-
mal behaviour, it is quite reliable, since in general we are not using
a (sub)gradient direction, so that many of the well-known practical
drawbacks associated with a (sub)gradient method with diminish-
ing step-size are mitigated in our setting. Furthermore, this choice
of step-size does not require any form of centralized coordination,
which is a favourable feature in a parallel environment.

We remark that it is possible to prove convergence of Algorithm
1 also using other step-size rules, such as a standard Armijo-like line-
search procedure or a (suitably small) constant step-size; see [28] for
more details. We omit the discussion of these options because of lack
of space, but also because the former is not in line with our parallel
approach while the latter is numerically less efficient.

On the choice of Ei(x).
• As we mentioned, the most obvious choice is to take Ei(x) =
‖x̂i(x

k, τi) − xk
i ‖. This is a valuable choice if the computation of

x̂i(x
k, τi) can be easily accomplished. For instance, in the LASSO

problem with N = {1, . . . , n} (i.e., when each block reduces to a
scalar variable), it is well-known that x̂i(x

k, τi) can be computed in
closed form using the soft-thresholding operator.
• In situations where the computation of ‖x̂i(x

k, τi) − xk
i ‖ is not

possible or advisable, we can resort to estimates. Assume momen-
tarily that G ≡ 0. Then it is known [29, Proposition 6.3.1] under
our assumptions that ‖ΠXi(x

k
i − ∇xiF (xk)) − xk

i ‖ is an error
bound for the minimization problem in (2) and therefore satisfies
(3), where ΠXi(y) denotes the Euclidean projection of y onto the
closed and convex set Xi. In this situation we can choose Ei(x

k) =
‖ΠXi(x

k
i −∇xiF (xk)) − xk

i ‖. If G(x) 6≡ 0 things become more
complex. In most cases of practical interest, adequate error bounds
can be derived from [15, Lemma 7].
• It is interesting to note that the computation of Ei is only needed
if a partial update of the (block) variables is performed. However,
an option that is always feasible is to take Sk = N at each iteration,
i.e., update all (block) variables at each iteration. With this choice
we can dispense with the computation of Ei altogether.

On the choice of Pi(xi;x).
• The most obvious choice for Pi is the linearization of F at xk

with respect to xi: Pi(xi;x
k) = F (xk) +∇xiF (xk)T (xi − xk

i ).
With this choice, and taking for simplicity Qi(x

k) = I, x̂i(x
k, τi)

is given by

argmin
xi∈Xi

{
F (xk) +∇xiF (xk)T (xi − xk

i ) +
τi
2
‖xi − xk

i ‖2 + gi(xi)
}
.

(5)
This is essentially the way a new iteration is computed in most se-
quential (block-)CDMs for the solution of (group) LASSO problems

and its generalizations. Note that contrary to most existing schemes,
our algorithm is parallel.
• Assuming F (xi,x

k
−i) convex, at another extreme we could just

takePi(xi;x
k) = F (xi,x

k
−i), which setting for simplicity Qi(x

k) =
I leads to

x̂i(x
k, τi) = argmin

xi∈Xi

{
F (xi,x

k
−i) +

τi
2
‖xi − xk

i ‖2 + gi(xi)
}
,

(6)
thus giving rise to a parallel nonlinear Jacobi type method for the
constrained minimization of V (x).
• Between the two “extreme” solutions proposed above one can con-
sider “intermediate” choices. For example, If F (xi,x

k
−i) is con-

vex, we can take Pi(xi;x
k) as a second order approximation of

F (xi,x
k
−i), i.e., Pi(xi;x

k) = F (xk) +∇xiF (xk)T (xi − xk
i ) +

1
2
(xi − xk

i )T∇2
xixi

F (xk)(xi − xk
i ). When gi(xi) ≡ 0, this es-

sentially corresponds to taking a Newton step in minimizing the “re-
duced” problem minxi∈Xi F (xi,x

k
−i), resulting in

x̂i(x
k, τi) = argmin

xi∈Xi

{
F (xk) + ∇xiF (xk)T (xi − xk

i )+

+
1

2
(xi − xk

i )T∇2
xixi

F (xk)(xi − xk
i ) +

τi
2
‖xi − xk

i ‖2 + gi(xi)

}
.

The framework described in Algorithm 1 can give rise to very
different instances, according to the choices one makes for the many
variable features it contains, some of which have been detailed above.
For lack of space, we cannot fully discuss here all possibilities. We
provide next just a few instances of possible algorithms that fall in
our framework; more examples can be found in [28].
Example #1−(Proximal) Jacobi algorithms for convex functions:
Consider the simplest problem falling in our setting: the uncon-
strained minimization of a continuously differentiable convex func-
tion, i.e., assume in (1) that F is convex, G(x) ≡ 0, and X = Rn.
Although this is possibly the best studied problem in nonlinear opti-
mization, classical parallel methods for this problem [27, Sec. 3.2.4]
require very strong contraction conditions. In our framework we can
take Sk = N , Pi(xi;x

k) = F (xi,x
k
−i), resulting in a fully paral-

lel Jacobi-type method which does not need any additional assump-
tions. Furthermore our theory shows that we can even dispense with
the convexity assumption and still get convergence of a Jacobi-type
method to a stationary point.
Example # 2−Parallel coordinate descent method for LASSO
Consider the LASSO problem, i.e., problem (1) withF (x) = ‖Ax−
b‖2, G(x) = c‖x‖1, and X = Rn. Probably, to date, the most suc-
cesful class of methods for this problem is that of CDMs, whereby
at each iteration a single variable is updated using (5). We can easily
obtain a parallel version for this method by taking ni = 1, Sk = N
and still using (5). Alternatively, instead of linearizing F (x), we can
better exploit the convexity of F (x) and use (6). Furthermore, we
can easily consider similar methods for the group LASSO problem
(just take ni > 1). As a final remark, we observe that convergence
conditions of existing (deterministic) fully distributed parallel ver-
sions of CDMs such as [2, 17] impose a constraint on the maximum
number of variables that can be simultaneously updated (linked to
the spectral radius of some matrices), a constraint that in many large
scale problems is likely not satisfied. A key feature of the proposed
scheme is that we can parallelize over (possibly) all variables while
guaranteeing convergence.

4. NUMERICAL RESULTS
In this section we provide some numerical results providing a solid
evidence of the viability of our approach; they clearly show that our
algorithmic framework leads to practical methods that exploit well
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parallelism and compare favourably to existing schemes, both paral-
lel and sequential. The tests were carried out on LASSO problems,
one of the most studied instance of (1); other classes of problems
are considered in [28]. We generate four instances of problems us-
ing the random generation technique proposed by Nesterov in [7];
; this method permits to control the sparsity of the solution. For
the first three groups, we considered problems with 10,000 variables
with the matrix A having 2,000 rows. The three groups differ in the
number of non zeros of the solution, which is 20% (low sparsity),
10% (medium sparsity), and 5% (high sparsity) respectively. The
last group is an instance with 100,000 variables and 5000 rows, and
solutions having 5% of non zero variables (high sparsity).

We implemented the instance of Algorithm 1 that we described
in Example # 2 in the previous section, with the only difference that
we used (6) instead of the proximal-linear choice (5). Note that in the
case of LASSO problems, the unique solution (6) can be computed
in closed form using the soft-thresholding operator, see e.g. [30].
The free parameters of the algorithm are chosen as follows. The
proximal parameters are initially set to τi = tr(ATA)/2n for all i,
where n is the total number of variables. Furthermore, we allowed
a finite number of possible changes to τi according to the following
rules: (i) all τi are doubled if at a certain iteration the objective func-
tion does not decrease; and (ii) they are all halved if the objective
function decreases for ten consecutive iterations. We updated γk ac-
cording to (4) with γ0 = 0.9 and θ = 1e − 5. Note that since τi
are changed only a finite number of times, conditions of Theorem
1 are satisfied, and thus this instance of Algorithm 1 is guaranteed
to converge. Finally we choose not to update all variables but set
Ei(x

k) = ‖x̂i(x
k, τi)− xk

i ‖ and ρ = 0.5 in Algorithm 1.
We compared our algorithm above, termed FLEXible parallel

Algorithm (FLEXA), with a parallel implementation of FISTA [30],
that can be regarded as the benchmark algorithm for LASSO prob-
lems, and Grock, a parallel algorithm proposed in [17] that seems
to perform extremely well on sparse problems. We actually tested
two instances of Grock, namely: i) one where only one variable is
updated at each iteration; and ii) a second instance where the num-
ber of variables simultaneously updated is equal to the number of
the parallel processors (16 for the first three set of test problems, 32
for the last). Note that the theoretical convergence of Grock is in
jeopardy as the number of updated variables increases; convergence
conditions for this method are likely to hold only if the columns of A
are “almost” orthogonal, a feature enjoyed by most our test problems
but not satisfied in most applications. As benchmark, we also imple-
mented two classical sequential schemes: (i) a Gauss-Seidel (GS)
method computing x̂i, and then updating xi using unitary step-size,
in a sequential fashion, and (ii) a classical Alternating Method of
Multipliers (ADMM) [31] in the form of [32]. Note that ADMM
can be parallelized, but it is known not to scale well and therefore
we did not consider this possibility here.

All codes have been written in C++ and use the Message Passing
Interface for parallel operations. All algebra is performed by using
the GNU Scientific Library (GSL). The algorithms were tested on
a cluster computer at the State University of New York at Buffalo.
All computations were done on one 32 core node composed of four
8 core CPUs with 96GB of RAM and Infiniband card. The 10,000
variables problems were solved using 16 parallel processes while
for the 100,000 variables problems 32 parallel processes were used.
GS and ADMM were always run on a single process. Results of
our experiments are reported in Fig. 1, where we plot the relative
error (V (xk)− V ?)/V ? versus the CPU time, where V ? is the op-
timal value of V . The CPU time includes communication times (for
distributed algorithms) and the initial time needed by the methods to
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Fig. 1. Relative error vs. time (in seconds, logarithmic scale): (a) medium size and
low sparsity - (b) medium size and sparsity - (c) medium size and high sparsity - (d)
large size and high sparsity

perform all pre-iterations computations (this explains why the plot of
FISTA starts after the others; in fact FISTA requires some nontrivial
initializations based on the computation of ‖A‖22). The curves are
averaged over ten random realizations for each of the 10,000 vari-
ables groups, while for large 100,000 variables problems the average
is over 3 realizations.

Fig 1 shows that on the tested problems FPA outperforms in
a consistent manner all other implemented algorithms. Sequential
methods behave strikingly well on the 10,000 variables problems,
if one keeps in mind that they only use one process; however, as
expected, they cannot compete with parallel methods when the di-
mensions increase. FISTA is capable to approach relatively fast low
accuracy solutions, but has difficulties in reaching high accuracies.
The parallel version of Grock is the closest match to FLEXA, but
only when the problems are very sparse and the dimensions not too
large. This is consistent with the fact that at each iteration Grock
updates only a very limited number of variables, and also with the
fact that its convergence properties are at stake when the problems
are quite dense. Our experiments also suggest that, differently from
what one could think (and often claimed in similar situations when
using gradient-like methods), updating only a (suitably chosen) sub-
set of blocks rather than all variables may lead to faster algorithms;
see [28] for a detailed discussion on this issue. In conclusion, we
believe the results overall indicate that our approach can lead to very
efficient practical methods for the solution of large problems, with
the flexibility to adapt to many different problem characteristics.

5. CONCLUSIONS
We proposed a highly parallelizable algorithmic scheme for the min-
imization of the sum of a differentiable function and a block-separable
nonsmooth one. Our framework easily allows us to analyze parallel
versions of well-known sequential methods and leads to entirely new
algorithms. When applied to large-scale LASSO problems, our al-
gorithm was shown to outperform existing methods.
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