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ABSTRACT

Sparse reconstruction approaches using the re-weighted ℓ1-

penalty have been shown, both empirically and theoretically,

to provide a significant improvement in recovering sparse sig-

nals in comparison to the ℓ1-relaxation. However, numerical

optimization of such penalties involves solving problems with

ℓ1-norms in the objective many times. Using the direct link

of reweighted ℓ1-penalties to the concave log-regularizer for

sparsity, we derive a simple proximal-like algorithm for the

log-regularized formulation. The proximal splitting step of

the algorithm has a closed form solution, and we call the al-

gorithm log-thresholding in analogy to soft thresholding for

the ℓ1-penalty. We establish convergence results, and demon-

strate that log-thresholding provides more accurate sparse re-

constructions compared to both soft and hard thresholding.

Furthermore, the approach can be directly extended to opti-

mization over matrices with penalty for rank (i.e. the nuclear

norm penalty and its re-weighted version), where we suggest

a singular-value log-thresholding approach.

Index Terms— sparsity, reweighted ℓ1, non-convex for-

mulations, proximal methods

1. INTRODUCTION

We consider sparse reconstruction problems which attempt to

find sparse solutions to under-determined systems of equa-

tions. A basic example of such a problem is to recover a

sparse vector x ∈ R
N from measurements y = Ax + n,

where y ∈ R
M with M < N , and n captures corruption by

noise. Attempting to find the sparsest solutions is known to

be NP-hard, so convex relaxations involving ℓ1-norms have

gained unprecedented popularity. Basis pursuit (or LASSO in

statistics literature) minimizes the following objective [1]:

min ‖y −Ax‖22 + λ‖x‖1 (1)

Here λ is a parameter that balances sparsity versus the norm

of the residual error. There is truly a myriad of algorithms to

solve (1), e.g. [2, 3, 4, 5]. For large-scale instances, variations

of iterative soft thresholding have become very popular [6]:

x
(n+1) = Sλ

(

x
(n) +AT (y − x

(n))
)

(2)

where Sλ(z) applies soft-thresholding for each entry:

Sλ(zi) = sign(zi)max(0, |zi| − λ). (3)

Based on operator splitting and proximal projection theories,

the algorithm in (2) converges if the spectral norm ‖A‖ < 1
[6, 7]. This can be achieved simply by rescaling A. Acceler-

ated versions of iterative thresholding have appeared [8].

An exciting albeit simple improvement over ℓ1-norms

for approximating sparsity involves weighting the ℓ1-norm:
∑

i wi|xi| with wi > 0. Ideal weights require knowledge

of the sparse solution, but a practical idea is to use weights

based on solutions of previous iterations [9, 10]:

w
(n+1)
i =

1

δ + |x̂(n)
i |

(4)

This approach can be motivated as a local linearization of the

log-heuristic for sparsity [9]. There is strong empirical [10]

and recent theoretical evidence that reweighted ℓ1 approaches

improve recovery of sparse signals, in the sense of enabling

recovery from fewer measurements [11, 12].

In this paper, we propose a simple proximal algorithm for

sparse recovery with the log-penalty and derive a closed-

form solution for the proximal step, which we call log-

thresholding. We establish monotone convergence of iterative

log-thresholding (ILT) to its fixed points, and conditions re-

lating these fixed points to local minima of the log-penalized

objective. Sparse recovery performance of the method on

numerical examples surpasses both soft and hard iterative

thresholding (IST and IHT). We also extend the approach to

minimizing rank for matrix functions via singular value log-

thresholding. To put this into context of related work, [13]

has considered iterative thresholding based on non-convex

ℓp-norm penalties for sparsity. However, these penalties

do not have a connection to re-weighted ℓ1 optimization.

Also, [14, 15, 16] have investigated alternative iterative op-

timization approaches for non-convex penalties including

the log penalty, but their solutions do not use closed form

log-thresholding.

2. ISTA AS PROXIMAL SPLITTING

We briefly review how soft-thresholding can be used to solve

the sparse reconstruction problem in (1). Functions of the

form f(x) = h(x)+g(x) where h(x) is convex differentiable

with a Lipschitz gradient, and g(x) is general convex can be
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solved by a general proximal splitting method [7]:

x̂
(n+1) = proxg

(

x
(n) −∇h(x(n))

)

. (5)

The prox-operation is a generalization of projection onto a set

to general convex functions:

proxh(x) = argmin
z

h(z) +
1

2
‖x− z‖22. (6)

If h(x) is an indicator function for a convex set, then the prox-

operation is equivalent to the projection onto the set, and ISTA

itself is equivalent to the projected gradient approach.

Forward-backward splitting can be applied to the sparse

recovery problem (1) by deriving the proximal operator for

ℓ1-norm, which is precisely the soft-thresholding operator in

(3). The convergence of ISTA in (2) thus follows directly

from the theory derived for forward-backward splitting [7].

3. LOG-THRESHOLDING

The reweighted-ℓ1 approach can be justified as an iterative

upper bounding by a linear approximation to the concave log-

heuristic for sparsity (here δ is a small positive constant) [9]:

min f(x) = min ‖y −Ax‖22 + λ
∑

i

log(δ + |xi|). (7)

While the log-penalty is not convex (it is in fact concave), we

still consider the scalar proximal objective around a fixed x:

gλ(z) , (z − x)2 + λ log(δ + |z|). (8)

We note that for δ small enough, the global minimum of gλ(z)
over z (with x held constant) is always at 0. However, when

|x| > x0 ,
√
2λ − δ, the function also exhibits a local min-

imum. For small x the local minimum disappears. We will

argue that it is the local, rather than the global minimum, that

provides the link to re-weighted ℓ1 minimization. Now, using

first order necessary conditions for optimality we can define

the ”log-thresholding” operator. For |x| > x0, we solve the

equation ∇gλ(z) = 0 to find the local minimum in closed-

form. We call this operation log-thresholding , Lλ(x):

Lλ(x) =















1
2

(

(xi − δ) +
√

(xi + δ)2 − 2λ
)

, x > x0

1
2

(

(xi + δ)−
√

(xi − δ)2 − 2λ
)

, x < −x0

0, otherwise

(9)

where x0 =
√
2λ−δ. We illustrate log-thresholding in Figure

1. The left plot shows gλ(z) as a function of z for several val-

ues of x. For large x the function has a local minimum, but for

small x the local minimum disappears. For log-thresholding

we are specifically interested in the the local minimum: an

iterative re-weighted ℓ1 approach with small enough step size

starting at x, i.e. beyond the local minimum, will converge to
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Fig. 1. Illustration of log-thresholding: (a) gλ(z) (b) Lλ(x).

the local minimum, avoiding the global one. The right plot

in Figure 1 shows the log-thresholding operation Lλ(x) with

x0 = 1 as a function of x. It can be seen as a smooth alterna-

tive falling between hard and soft thresholding.

In analogy to ISTA, we can now formally define the iter-

ative log-thresholding algorithm:

x̂
n+1 = Lλ

(

x
n +AT (y −Ax

n)
)

(10)

where Lλ(z) applies the element-wise log-thresholding oper-

ation we obtained in (9). We establish its convergence next.

3.1. Convergence of iterative log-thresholding

The theory of forward-backward splitting does not apply to

analyze log-thresholding, as log-penalty is non-convex, and

log-thresholding is not not firmly non-expansive. However,

we will instead use an approach based on optimization trans-

fer using surrogate functions [17]. At a high-level our analysis

for ILT follows that for IHT in [18], but some of the steps are

notably different. In Section 6 we establish:

Proposition 1 The ILT algorithm in (10) monotonically de-

creases the objective f(x) in (7), and converges to fixed points

if ‖A‖2 < 1.

We also relate ILT fixed points to local minima of the log-

penalized objective (7) under additional technical conditions.

4. SINGULAR VALUE LOG-THRESHOLDING

A closely related problem to finding sparse solutions to sys-

tems of linear equations is finding low-rank matrices from

sparse observations, known as matrix completion:

min
X

rank(X) such that Xi,j = Yi,j , {(i, j) ∈ Ω} (11)

Similar to sparsity, rank is a combinatorial objective which

is typically intractable to optimize directly. However, the nu-

clear norm ‖X‖∗ ,
∑

i σi(X), where σi(X) are the singular

values of X, serves as the tightest convex relaxation of rank,

7249



0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

K

re
l.
 e

rr
 n

o
rm

relative norm error

IST

IHT

ILT

0 2 4 6 8 10 12 14
0

0.5

1

K

p
ro

b
. 

re
c
o
v
e
ry

probability of recovery

IST

IHT

ILT

Fig. 2. Noiseless sparse recovery: (a) average error-norm (b)

probability of exact recovery after 250 iterations over 1000
random trials. M = 100, N = 200.

analogous to ℓ1-norm being the convex relaxation of the ℓ0-

norm. In fact, the nuclear norm is exactly the ℓ1-norm of

the singular value spectrum of a matrix. This connection en-

ables the application of various singular value thresholding

algorithms: for instance, the SVT algorithm of [19] alternates

soft-thresholding of the singular value spectrum with gradi-

ent descent steps. In the experimental section we investigate a

simplified singular-value log-thresholding algorithm for ma-

trix completion, where we replace soft thresholding with hard

and log-thresholdings. We present very promising empirical

results of singular value log-thresholding in Section 5, and a

full convergence analysis will appear in a later publication.

5. EXPERIMENTS

We investigate the performance of iterative log thresholding

via numerical experiments on noiseless and noisy sparse re-

covery. Intuitively we expect ILT to recover sparser solu-

tion than soft-thresholding (IST) due to the connection to re-

weighted-ℓ1 norms, and also to behave better than the non-

smooth iterative hard thresholding (IHT).

First we consider sparse recovery without noise, i.e. we

would like to find the sparsest solution that satisfies y = Ax

exactly. One could in principle solve a sequence of problems

(1) with decreasing λ, i.e. increasing penalty on ‖y − Ax‖22
via IST, IHT, ILT. However, when we know an upper bound

K on the desired number of non-zero coefficients, a more suc-

cessful approach is to adaptively change λ to eliminate all ex-

cept the top-K coefficients in each iteration1 as used e.g. in

[20]. We compare the performance of IST, IHT, and the pro-

posed ILT in Figure 2. We use i.i.d. random normal A with

N = 200,M = 100 and we vary K. Apart from changing

the thresholding operator, all the algorithms are exactly the

same. The top plot shows the average reconstruction error

from the true sparse solution ‖x̂ − x
∗‖2. It is averaged over

1This is easy for IST and IHT by sorting |x| in descending order: let

s = sort|x| then λ = sK+1. For ILT we have λ =

(xK+1+δ)2

4
from (9).
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Fig. 3. Sparse recovery with noise. Average error vs. sparsity

over 100 trials, after 250 iterations.

1000 trials allowing IST, IHT and ILT to run for up-to 250 it-

erations. The bottom plot shows probability of recovering the

true sparse solution. We can see that ILT is superior in both

probability of recovery (higher probability of recovery) and

in reconstruction error (lower reconstruction error) over both

IST and IHT.

Our next experiment compares the three iterative thresh-

olding algorithms on noisy data. Since regularization param-

eters have a different meaning for the different penalties, we

plot the whole solution path of squared residual error vs. spar-

sity for the three algorithms in Figure 3. We compute the av-

erage residual norm for a given level of sparsity for all three

algorithms, averaged over 100 runs. We have M = 100, N =
200, K = 10 and a small amount of noise is added. We can

see that the iterative log thresholding consistently achieves the

smallest error for each level of sparsity.

In our final experiment we consider singular value log-

thresholding for matrix completion. We study a simplified al-

gorithm that parallels the noiseless sparse recovery algorithm

with known number of nonzero-elements K. We alternate

gradient steps with steps of eliminating all but the first K sin-

gular values by soft, hard and log-thresholding. We have an

N × N matrix with 30% observed entries, N = 100 and

rank, K = 2. We show the average error in Frobenius norm

from the true underlying solution as a function of iteration

number over 100 random runs in Figure 4. We see that the

convergence of log-SV-thresholding to the correct solution is

consistently faster. We expect similar improvements to hold

for other algorithms involving soft-thresholding, and to other

problems beyond matrix completion, e.g. robust PCA.

6. CONVERGENCE OF ILT

Here we establish Proposition 1. We first define a surrogate

function for f(x) in (7):

Q(x, z) = ‖y −Ax‖22 + λ
∑

i

log(δ + |xi|) +

‖x− z‖22 − ‖A(x− z)‖22 (12)
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Fig. 4. Singular-value log-thresholding for matrix comple-

tion: Frobenius-norm of error vs. iterations.

Note that Q(x,x) = f(x). Simplifying (12) we have

Q(x, z) =
∑

i

(

xi − ki(z))
2 + λ log(xi + |δ|)

)

+K(z),

(13)

where ki(z) = zi + aTi y − aTi Az and K(z) contains terms

independent of x. The optimization over x is now separable,

i.e. can be done independently for each coordinate. We can

see that finding local minima over x of Q(x, x̂n) to define

x̂
(n+1) corresponds to iterative log-thresholding. Using this

motivation for ILT, we can now show:

Proposition 2 f(x̂n) = Q(x̂n, x̂n) and Q(x̂n+1, x̂n), are

monotonically decreasing with iterations n, and ILT con-

verges to its fixed points, if the spectral norm ‖A‖2 < 1.

The proof parallels the IHT proof of [18] using the fact that

Q(xn+1,xn) = f(xn)+‖xn+1−x
n‖2−‖A(xn+1−x

n)‖2,

which is independent of the thresholding used. The main dif-

ference for ILT is that x̂n+1 is not the global minimum of

Q(x, x̂n) but it still holds that Q(x̂n+1, x̂n) < Q(x̂n, x̂n).
To show convergence to fixed points, we use the proof tech-

nique of [Theorem 3] in [18]. Next, we have:

Proposition 3 Any fixed point of (10) satisfies the following:











a
T
i (y −Ax̄) = λ

2(x̄i+δ) if x̄i > x0

a
T
i (y −Ax̄) = λ

2(x̄i−δ) if x̄i < −x0

|aTi (y −Ax̄)| ≤ x0 otherwise

In other words, if |x̄i| > x0, then the corresponding gradi-

ent component satisfies local stationarity conditions for prob-

lem (7), and if |x̄i| < x0, the gradient is bounded.

Proof: Given a fixed point x̄ of (10) define

si = a
T
i (y −Ax̄), (14)

Suppose first that x̄i + si > x0. Explicitly writing (10),

x̄i − si + δ =
√

(x̄i + si + δ)2 − 2λ,

squaring both sides, and simplifying, we have

a
T
i (y −Ax̄) =

λ

2(x̄i + δ)
,

which is precisely equivalent to local optimality of (7) with

respect to the ith coordinate. Otherwise, suppose 0 ≤ x̄i +
si < x0. Then we have x̄i = 0, and so si ≤ x0.

Proposition 4 For any fixed point x̄ of the ILT algorithm (7)

∃ǫ > 0 s.t. for small perturbation ‖η‖∞ < ǫ, we have

Q(x̄+ η, x̄) > Q(x̄) +
∑

i:x̄i=0

η2i +
3

4

∑

i:x̄i 6=0

η2i ,

if δ is small enough. Namely, the condition on δ is:

λ

δ
+ 2δ > 2

√
2λ. (15)

Proof: This result follows from Proposition 3, together with

the proof technique of [18][Lemma 3]. In particular, for any

perturbation η, we can write Q(x̄+ η, x̄)−Q(x̄, x̄) as

=
∑

i

(

−2ηisi + η2i + λ log

( |x̄i + ηi|+ δ

|x̄i|+ δ

))

Defining now Γ0 = {i : x̄i = 0} and Γ1 = {i : x̄i 6= 0}, we

can use Proposition 3 to rewrite Q(x̄+ η, x̄)−Q(x̄, x̄) as:

‖η‖2 +
∑

i∈Γ0

(

−2ηisi + λ log

( |ηi|+ δ

|δ|

))

+

∑

i∈Γ1

(

− ηiλ

x̄i + |δ| + λ log

( |x̄i + ηi|+ δ

|x̄i|+ δ

))

We now consider lower bounds for each of these two sums

taking all xi ≥ 0 WLOG:

∑

i∈Γ0

− 2ηisi + λ log

( |ηi|+ δ

δ

)

≥

=
∑

i∈Γ0

λ log

(

1 +
|ηi|
δ

)

− 2ηi|x0|

=
∑

i∈Γ0

(

λ
|ηi|
δ

− 2|ηi|x0

)

−O(‖η‖2)

Given that (15) holds, the quantity on the last line is positive

for η small enough. For Γ1, we have

∑

i∈Γ1

− ηiλ

x̄i + δ
+ λ log

( |x̄i + ηi|+ δ

|x̄i|+ δ

)

≥

∑

i∈Γ1

−ηiλ+ ηiλ

x̄i + δ
− 1

4

2λη2i
(|x̄i|+ δ)2

≥ −1

4

∑

i∈Γ1

η2i

where we use
(x̄i+δ)2

2λ ≥ 1 for i ∈ Γ1 in last line.

Finally, using the fact that f(x̄ + η) = Q(x̄ + η, x̄) −
‖η‖2 + ‖Aη‖2 and Proposition 4, we have:

Proposition 5 If the singular values AΓ1
are greater than 1

2 ,

these fixed points must be the local minima of (7).

We hope to relax this condition in future work.
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