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ABSTRACT
We consider the dictionary learning problem for the analy-
sis model based sparse representation. A novel algorithm is
proposed by adapting the synthesis model based simultane-
ous codeword optimisation (SimCO) algorithm to the analy-
sis model. This algorithm assumes that the analysis dictio-
nary contains unit `2-norm atoms and trains the dictionary by
the optimisation on manifolds. This framework allows one
to update multiple dictionary atoms in each iteration, lead-
ing to a computationally efficient optimisation process. We
demonstrate the competitive performance of the proposed al-
gorithm using experiments on both synthetic and real data, as
compared with three baseline algorithms, Analysis K-SVD,
analysis operator learning (AOL) and learning overcomplete
sparsifying transforms (LOST), respectively.

Index Terms— Analysis model, SimCO, analysis dictio-
nary learning.

1. INTRODUCTION

Dictionary design is an important problem in sparse represen-
tation. Recent studies have shown that dictionaries learned
from a set of training signals have the potential to fit the sig-
nals better than the analytical dictionaries [1], [2]. Many dic-
tionary learning algorithms, such as MOD [3], K-SVD [1] and
SimCO [4], are established on the synthesis model, where a
signal is represented as a linear combination of a few atoms
(signal components) from the dictionary. Learning dictionar-
ies with an analysis model where the product of the dictionary
and the signal is sparse, however, has received less attention,
with only a few activities emerging recently, such as [2], [5],
[6], [7], [8]. Analysis K-SVD algorithm [2] was proposed
based on the K-SVD algorithm [1]. SVD is applied to update
the rows of the dictionary one by one. The algorithm is able
to recover a high percentage of the atoms of the ground-truth
dictionary used to generate the training signals. However, its
computational complexity is quite high. The algorithm re-
ported in [5], named analysis operator learning (AOL), re-
stricts the dictionary on the uniformly normalized tight frame
(UNTF) and formulates the dictionary learning problem as
an `1 optimisation problem. It is computationally efficient
but the constraints exclude the feasible dictionaries outside
UNTF. The algorithm proposed in [6] is based on `p-norm

minimization on the set of full rank dictionaries, which is ad-
dressed by a conjugate gradient method on manifolds. The
objective function of this algorithm is however complicated
with many parameters required to be carefully chosen. In [7],
a learning overcomplete sparsifying transform (LOST) algo-
rithm is proposed by extending the work in [8] from complete
dictionary to the overcomplete case, where both the full rank
and unit norm constraints are considered in the optimisation
criterion. As demonstrated in Section 4.1, however, this algo-
rithm is less effective in reaching the cosparsity pre-defined
in the optimisation criterion.

Here we focus on the analysis dictionary learning (ADL)
problem and propose a new algorithm which can partly ad-
dress the limitations of the algorithms mentioned above.
More specifically, we adapt the synthesis model based SimCO
algorithm [4] to the analysis model and develop a new ADL
algorithm which is referred to as Analysis SimCO. We as-
sume that the analysis dictionary contains unit `2-norm rows.
The Analysis SimCO algorithm has three important features.
First, the optimisation method on manifolds modified from
the framework of SimCO is applied to update the dictionary.
Second, multiple dictionary atoms can be updated simultane-
ously which is different from the Analysis K-SVD algorithm
where only one atom is allowed to be updated in each itera-
tion. Third, the Analysis SimCO is computationally efficient
due to the use of a simple optimisation process.

The remainder of the paper is organized as follows. The
SimCO algorithm is introduced in Section 2. Section 3
presents the proposed Analysis SimCO algorithm in de-
tail and discusses its computational complexity. Section 4
demonstrates the performance of the Analysis SimCO al-
gorithm via simulations on synthetic and real data. Finally,
Section 5 concludes the paper.

2. THE SIMCO ALGORITHM

SimCO [4] was proposed to train an overcomplete synthesis
dictionary containing unit `2-norm atoms from a set of signals
so that the signals can be best approximated by a few atoms
of the dictionary.

Let Y = [y1,y2, ...,yn] ∈ Rm×n denote the training
signals, where each column of Y is one training signal. In
SimCO, the dictionary learning problem is formulated as
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inf
D∈D

f(D) = inf
D∈D

inf
A∈A

‖Y −DA‖2F︸ ︷︷ ︸
f(D)

(1)

where ‖ · ‖F is the Frobenius norm. A ∈ Rd×n contains the
representation vectors and D ∈ Rm×d is the dictionary we
seek. D represents the set of all feasible matrices that contain
unit `2-norm columns. A represents the set of all feasible
coefficient matrices with a sparsity pattern which contains the
indices of all the non-zero elements in A.

To solve the optimisation problem (1), SimCO follows the
conventional two-stage optimisation process – sparse coding
and dictionary update. The sparse coding stage is to calcu-
late the sparse representations A of the signals Y for a given
D. Sparse coding algorithms such as Orthogonal Matching
Pursuit [9] can be used in this stage. In the dictionary update
stage, SimCO uses the optimisation methods on manifolds to
update the dictionary D and A simultaneously while keeping
the sparsity pattern of A unchanged. This framework is able
to update multiple atoms of D simultaneously in each itera-
tion and guarantee the columns of D to have unit `2-norm.

3. THE ANALYSIS SIMCO ALGORITHM

Here we address the problem of dictionary learning for the
analysis model. Given a set of training signals Y, ADL aims
to learn a dictionary Ω ∈ Rp×m with which the analysis rep-
resentations of Y are sparse. This problem can be cast as

min
X,Ω
‖X−ΩY‖2F s.t. ∀i, ‖X:,i‖0 = p− l (2)

where X:,i is the ith column of X. The `0 quasi-norm ‖ · ‖0
counts the number of non-zeros of a vector and l is the cospar-
sity. However, the problem (2) has many trivial solutions, for
example, Ω = 0. In order to exclude such trivial solutions,
we assume the rows of Ω to have unit `2-norm. In this case,
the ADL problem can be rewritten as

min
X,Ω
‖X−ΩY‖2F

s.t. ∀i, ‖X:,i‖0 = p− l,
∀j, ‖Ωj,:‖2 = 1

(3)

where Ωj,: denotes the jth row of Ω.
The problem (3) can be viewed as two separate optimisa-

tion problems on X and Ω respectively by keeping one fixed
and changing the other. Inspired by the dictionary learning
algorithms based on the synthesis model, ADL can also al-
ternate between two stages: analysis sparse coding and dic-
tionary update, initializing with a random and normalized Ω.
The first stage calculates X for the given dictionary Ω. In the
dictionary update stage, Ω is updated assuming known and
fixed X. We attempt to develop the Analysis SimCO based
on SimCO for the update of Ω, observing the similarity be-
tween (3) and (1). We use the name Analysis SimCO since
the atoms are updated simultaneously using optimization on
manifolds like SimCO.

Algorithm 1 Analysis SimCO
Input: Y, p, l
Output: Ω̂ = Ωk+1

Initialization:
Initialize the iteration counter k = 1 and the analysis

dictionary Ωk. Perform the following steps.
Main Iterations:

1. Calculate Xk according to equation (4): Xk = ΩkY
2. Apply hard thresholding operation according to

equation (5): X̂k = HTl(X
k)

3. Update the analysis dictionary according to equations
(7), (8), and (9): Ωk+1 ← Ωk

4. Increase the iteration counter: k = k + 1
5. If the stopping criterion is satisfied, quit the iteration.

Otherwise, go back to step 1.

The procedure of our proposed Analysis SimCO algo-
rithm is presented in Algorithm 1. The details are given in
the following subsections.

3.1. Analysis Sparse Coding

The goal of analysis sparse coding is to get the sparse repre-
sentations of the training signals based on a given dictionary.
Unlike the corresponding part of the synthesis model, here the
exact representations X can be calculated directly by simply
multiplying the signals by the dictionary, that is

X = ΩY (4)

However, the representations obtained by equation (4) may
not be sparse since the initial dictionary is an arbitrary one.

A hard thresholding operation is therefore applied to en-
force the cosparsity

X̂ = HTl(X) (5)

where HTl(X) is an operator that sets the smallest l elements
(in magnitude) of each column of X to 0. In doing so, the
sparsity constraint can be enforced.

3.2. Dictionary Update

The dictionary update stage aims to find the solution of the
optimisation problem

min
Ω
‖X−ΩY‖2F s.t. ∀j, ‖Ωj,:‖2 = 1. (6)

The Stiefel manifold Um,1 is defined as Um,1 = {u ∈
Rm : uTu = 1} [4]. Based on this definition, the transpose
of each row in Ω is one element in Um,1, while in SimCO
each column in the dictionary D is one element in Um,1 [4].
Realizing this similarity, we can solve the optimisation prob-
lem (6) by applying a similar line search path on manifolds as
in SimCO.

Here we use the first order optimisation procedures of
SimCO, i.e. the gradient descent line search method. We
explain below the key points of this method including search
direction, line search path and step size respectively.

7244



3.2.1. Search Direction

Using the gradient descent method, the search direction H is
the negative gradient of the cost function (6) with respect to
Ω, that is

H = −∂‖X−ΩY‖2F
∂Ω

= 2XYT − 2ΩYYT (7)

3.2.2. Line Search Path

Let hj be the jth row of H. Define

h̄j = hj − hjΩ
T
j,:Ωj,; , ∀j ∈ {1, 2, ..., p} (8)

so that h̄jΩ
T
j,: = Ωj,:h̄

T
j = 0. The line search path for dic-

tionary update, say Ω(t), where t ≥ 0 denotes step size, is
given by [4]

Ωj,:(t) = Ωj,: if ‖h̄j‖2 = 0,

Ωj,:(t) = Ωj,: cos(‖h̄j‖2t) + (h̄j/‖h̄j‖2) sin(‖h̄j‖2t)
if ‖h̄j‖2 6= 0

(9)
Using equation (9) to update the rows of Ω, the constraint that
the dictionary Ω only contains unit `2-norm rows can always
be satisfied.

3.2.3. Step Size

We use the method of golden section search, same as that in
SimCO [4], to find a proper step size t.

3.3. Computational Complexity

The time complexity of the sparse coding stage is dominated
by the calculation of ΩY, at O(pmn). In the dictionary
update stage, computing the gradient H is the dominating
part. Computing the product XYT requires O(pmn) oper-
ations. The time complexity of ΩYYT is O(pm2) with pre-
computed YYT . As a result, the dictionary update stage re-
quires O(pmn) operations with the usual case n > m. The
total time complexity of each iteration of the Analysis SimCO
algorithm thus scales as O(pmn).

In contrast, the computational complexity of the Analysis
K-SVD algorithm is dominated by the analysis pursuit algo-
rithm, i.e. Backward-Greedy (BG). For one training sample,
the complexity of BG is O(pm2) and the computational com-
plexity becomes O(pm3) if the Optimized BG (OBG) is ap-
plied instead [2]. Given n training samples, the complexity
of the Analysis K-SVD algorithm is O(pm2n) using BG or
O(pm3n) using OBG.

Our proposed algorithm leads to a significant reduction
of the computational cost as compared with the Analysis K-
SVD, as also confirmed in the next section.

4. SIMULATION RESULTS

We conducted some experiments for both synthetic and real
data to demonstrate the performance of the Analysis SimCO
algorithm.

4.1. Experiments With Synthetic Data

We randomly generated a dictionary and a set of data with
fixed cosparsity l based on the dictionary. The elements of
the ground-truth analysis dictionary Ω ∈ Rp×m were gener-
ated from the Gaussian distribution with zero mean and unit
variance and the rows of Ω were normalized. Then the train-
ing signals were generated based on Ω and normalized.

In the tests, we fixed the parameters p = 50, m = 25,
l = 21, n = 50000. We choose Analysis K-SVD [2], AOL
[5] and LOST [7] as baseline algorithms. The cases of train-
ing with clean and noisy signals were both tested. In the noisy
case, the noise level was σ = 0.04 (SNR = 25dB). For the
algorithm AOL, we applied its noiseless version (NL)AOL to
the noiseless case and its noise-aware version (NA)AOL to
the noisy case. The algorithms were initialized with a data-
driven dictionary in which each row was orthogonal to a ran-
dom set of m − 1 examples as in [2]. We applied 300 itera-
tions of the Analysis K-SVD using the OBG algorithm, 300
iterations of (NA)AOL, and 1000 iterations of the Analysis
SimCO, (NL)AOL and LOST1. All algorithms ran 5 times
for the noiseless and noisy case respectively. The target di-
mension of signals in the Analysis K-SVD was set as 4. The
parameters of LOST were set empirically as α = 10−4, η =
λ = µ = 50, s = 29, p = 20 (Here p is a parameter in
the objective function of LOST, not the number of atoms in
Ω). The step size of (NL)AOL was η = 5 × 10−6. For
the (NA)AOL algorithm, we use the same setup as originally
suggested by the authors. The iteration number of the opera-
tor update step was 10000, the initial step size α = 10−7 and
ρ = 0.67. For the cosparse signal update step, the iteration
number was 1000, and γ = λ = 0.3.

Following the experiments in [2], we used the percentage
of the recovered atoms to measure the performance of the al-
gorithms for recovering the ground-truth dictionary. A row
ωj in the true dictionary Ω is regarded as recovered if [2]

min
i

(1− |ω̂iωTj |) < 0.01 (10)

where ω̂i are the atoms of the trained dictionary.
In addition, we introduce an operator ‖x‖ε0 to count the

number of the elements in x ∈ Rp that are below the threshold
ε, i.e.

‖x‖ε0 = #{i : |xi| < ε, i = 1, 2, ..., p} (11)

where xi denotes the ith element of x. We can get the cospar-
sities of the training signals in the trained dictionaries by ap-
plying this operator to their representation vectors. Here we
use the threshold ε = 0.001. The average cosparsity of all the
training signals is used to measure the quality of the trained
dictionaries, as the final goal of ADL is to find a dictionary
that can sparsely represent the training signals.

The percentage of the recovered atoms and the average
cosparsity over iterations are plotted in Fig. 1. For the re-
covery rate, the Analysis SimCO outperforms (NL)AOL/

1Due to high computational complexity, we performed 300 iterations of
the Analysis K-SVD and (NA)AOL which took nearly 8 hours and 32 hours
respectively.
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(NA)AOL and it is slightly lower than LOST and Analysis
K-SVD, in both noiseless and noisy case. The average cospar-
sity obtained by the Analysis SimCO is closer to the ground-
truth than LOST and (NL)AOL/(NA)AOL, but slightly worse
than Analysis K-SVD. These results demonstrate that our
proposed algorithm offers competitive performance as com-
pared with these baseline algorithms.

Fig. 1. Recovery Rate and Average Cosparsity over iterations
in noiseless case (top) and noisy case (bottom).

Although the results of Analysis K-SVD for the two met-
rics are the best, its computational load is much higher than
the other algorithms except (NA)AOL. The average running
time per iteration is 93.77s for Analysis K-SVD (using par-
allel computation with two work-stations when performing
OBG), 0.21s for (NL)AOL, 385.66s for (NA)AOL, and 1.78s
for LOST respectively. The Analysis SimCO needs on av-
erage only 0.56s per iteration.2 Even though more iterations
of the Analysis SimCO were applied, the running time for the
Analysis SimCO is still much shorter than that of the Analysis
K-SVD and (NA)AOL. The higher efficiency of the Analysis
SimCO results from the optimisation framework that can up-
date multiple rows simultaneously in each iteration.

4.2. Experiments With Real Data

In the experiments with real data, we applied the analysis dic-
tionary learning algorithms to image denoising. Four images,
“Boats”, “House”, “Lena’ and “Peppers” were manually cor-
rupted by additive white Gaussian noise of zero mean and
standard deviation σ. We tested the cases of three different
noise levels σ = 5, 25, 45. For each noisy image, 7 × 7
patches were extracted and used as samples to learn an over-
complete dictionary of size 63×49. The proposed algorithm,
Analysis K-SVD [2], LOST [7] and (NA)AOL [5] were ap-
plied respectively to learn analysis dictionaries, and then the

2All algorithms were implemented in Matlab R2012a and performed with
an Intel Core i5 CPU at 3.30GHz and 8GB memory.

Table 1. The Denoising PSNR Results in decibels.
σ

(PSNR)
Algorithm Boats House Lena Peppers

5
(34.15)

Analysis SimCO 36.65 38.25 38.16 37.43
Analysis K-SVD 37.12 39.12 38.45 37.82

LOST 36.76 38.46 38.16 37.47
(NA)AOL 36.91 38.56 37.94 37.41

25
(20.20)

Analysis SimCO 28.61 30.53 30.75 28.75
Analysis K-SVD 28.43 30.32 30.47 28.67

LOST 28.58 30.41 30.65 28.67
(NA)AOL 27.76 29.57 29.25 27.87

45
(15.07)

Analysis SimCO 25.98 27.45 27.88 25.68
Analysis K-SVD 25.83 27.28 27.74 25.51

LOST 25.97 27.13 27.74 25.56
(NA)AOL 24.76 25.87 26.21 24.52

analysis pursuit algorithm OBG [2] was applied to reconstruct
the images with the trained dictionaries. The error-threshold
of OBG for image recovery was ε = 1.15

√
mσ. The al-

gorithms were still initialized with a data-driven dictionary,
same as the experiments with synthetic data.

The iteration number of the Analysis K-SVD was 100
and other three algorithms were applied 200 iterations3. The
cosparsity of the Analysis SimCO was set as l = 42 while
the corresponding parameters of the Analysis K-SVD algo-
rithm and LOST were r = 7 and s = 21 receptively, in order
to guarantee a fair comparison. Other parameters of LOST
were α = 10−11, η = λ = µ = 105, p = 20. The same
parameters were used for (NA)AOL as in the experiment for
the synthetic data. Table 1 summarizes the denoising results
(image PSNR in dB) averaged over 10 independent tests.

As can be seen from Table 1, the results of all algorithms
are very close to each other in general. In the lower noise
level cases when σ = 5, the Analysis K-SVD algorithm gets
the best results. When the noise level increases, the proposed
Analysis SimCO algorithm outperforms the other three base-
line algorithms, showing that the proposed algorithm is po-
tentially more robust to noise corruption.

5. CONCLUSION

We have proposed an analysis dictionary learning algorithm:
Analysis SimCO. The dictionary learning process is formu-
lated as an optimisation problem with the sparsity and unit
`2-norm constraints of the atoms in the dictionary. The algo-
rithm iteratively solves this problem by thresholding and the
gradient descent method on manifolds. Experimental results
on both synthetic and real data demonstrated the competitive
performance in recovery rate, average cosparsity, computa-
tional efficiency and image denoising, as compared with three
baseline algorithms.

3The iteration numbers were set empiracally based on the computational
time and convergence of the algorithms.
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