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ABSTRACT

In this work, we address the recovery of block sparse vectors with
intra-block correlation, i.e., the recovery of vectors in which the
correlated nonzero entries are constrained to lie in a few clusters,
from noisy underdetermined linear measurements. Among Bayesian
sparse recovery techniques, the cluster Sparse Bayesian Learning
(SBL) is an efficient tool for block-sparse vector recovery, with intra-
block correlation. However, this technique uses a heuristic method
to estimate the intra-block correlation. In this paper, we propose
the Nested SBL (NSBL) algorithm, which we derive using a novel
Bayesian formulation that facilitates the use of the monotonically
convergent nested Expectation Maximization (EM) and a Kalman
filtering based learning framework. Unlike the cluster-SBL algo-
rithm, this formulation leads to closed-form EM updates for estimat-
ing the correlation coefficient. We demonstrate the efficacy of the
proposed NSBL algorithm using Monte Carlo simulations.

1. INTRODUCTION

In recent literature, techniques such as Compressed Sensing(CS) [1]
and Bayesian methods [2–5] have been proposed for efficiently
reconstructing sparse signals from an underdetermined system of
linear equations. In this paper, we consider the recovery of sparse
signals which exhibit additional structure, wherein, the nonzero
entries are constrained to occur in a few clusters, i.e., signals are
block-sparse, and the entries within a nonzero block are correlated
with each other. There are several applications where block-sparsity
and intra-block correlation arise naturally (see [6] and references
therein). In particular, strong intra-block correlation has been ob-
served in EEG, ECG and several physiological signals [7]. Pop-
ular CS based approaches exploit block-sparsity in linear models
using mixed penalty, such as the !1 − !2 and !1 − !∞ [8–10],
block matching pursuit, block orthogonal matching pursuit [9], and
block-CoSamp [11]. However, none of the techniques based on
CS exploit the intra-block correlation in the block-sparse signal.
In the Bayesian framework, a block-sparse vector recovery algo-
rithm known as the cluster-SBL algorithm [12, 13] is proposed,
which, in addition to incorporating the block-sparse structure into
the prior probability density function (pdf), also exploits the intra-
block correlation. However, when the intra-block correlation is not
known, the cluster-SBL framework uses an approximate heuristic to
compute this intra-block correlation.
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In the context of Bayesian estimation, it is known that adding
hidden variables to the problem space can lead to enhanced inter-
action between the observed and hidden variables, and, in turn, sim-
plify the problem [14]. In this work, we reformulate the block-sparse
recovery problem in the Bayesian framework. Typically, the SBL
family of algorithms consider the unknown sparse vector as the hid-
den variable. Here, we introduce a set of hidden variables in order
decompose the block-sparse vector recovery problem into a set of
low-dimensional sparse vector recovery problems and explicitly im-
pose the block-sparse structure of the signal. We propose a Nested
SBL (NSBL) algorithm for block-sparse vector recovery, by employ-
ing the Nested Expectation Maximization (EM) [15] approach and a
Kalman filtering based framework [16] for learning the intra-block
correlation. In essence, NSBL is based on a divide and conquer ap-
proach: the problem of estimating a high-dimensional block sparse
vector is reformulated as a set of smaller problems each involving
the estimation of low-dimensional correlated group-sparse vectors.

2. SYSTEMMODEL AND PROBLEM FORMULATION

We consider a BM -length block-sparse vector x consisting of B
blocks denoted by b1, . . . ,bB , and arranged as follows:

x = [x11, x12, . . . , x1M
︸ ︷︷ ︸

bT
1 :b1∈RM×1

; . . . ; xB1, xB2, . . . , xBM
︸ ︷︷ ︸

bT
B
:bB∈RM×1

]. (1)

The M entries of each block bi are constrained to be either all-
zero or all-nonzero. In the cluster-SBL framework, the block-sparse
structure is exploited by modeling bi ∼ N (0, γiBi), where γi is
an unknown hyperparameter such that when γi = 0, the ith block
of x is zero [12]. Here, Bi ∈ R

M×M is a positive-definite covari-
ance matrix that captures the intra-block correlation of the ith block,
which is also unknown. Moreover, different blocks are mutually un-
correlated, and hence, the block-sparse vector x ∼ N (0,Σ0), where
Σ0 is a block-diagonal matrix with principal blocks given by γiBi,
1 ≤ i ≤ B.

The noisy observations y ∈ R
N×1 are obtained as a weighted

combination of the columns of a measurement matrixΦ ∈ R
N×MB ,

as follows:
y = Φx+ n, (2)

where the components of the additive noise n ∈ R
N×1 are indepen-

dent, zero mean, and Gaussian distributed: n ∼ N (0,σ2IN ).
Restructuring the block-sparse vector x, the problem of recover-

ing x from y is equivalent to finding the vectors x1, . . . ,xM , as
depicted in Fig. 1. Since bi ∼ N (0, γiBi) for 1 ≤ i ≤ B,
xi ∼ N (0,Γ) where Γ = diag(γ(1), . . . , γ(B)), i.e., x1, . . . ,xM

represent group-sparse vectors.
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Fig. 1. Restructuring the block-sparse recovery problem such that
the B length vectors x1, . . . ,xM are group-sparse vectors.

By rearranging the columns of Φ, the system model in (2) can
be equivalently written as

y =
M
∑

m=1

tm, where tm ! Φmxm+nm, 1 ≤ m ≤ M. (3)

In (3), Φm ∈ R
N×B consists of the columns of Φ such that the co-

efficients corresponding to its columns are given by xm. Although
nm cannot be explicitly obtained, we note that its covariance can
be written as nm ∼ N (0,βmσ2IN ) where, 0 ≤ βm ≤ 1 and
∑M

m=1 βm = 1. If tm is known, recovering xm from tm is a mul-
tiple measurement vector based group-sparse recovery problem [17]
in a lower dimensional space (B), as compared to the dimension of
the original problem (MB). In this work, we focus on recovering
the block-sparse vector by recovering its group-sparse components
x1, . . . ,xM , using the restructured problem given by (3).

In the following section, we propose two algorithms which re-
cover x when B1 = . . . = BM = B. In the first case, B = IB ,
while in the second case, B need not be a scaled identity matrix.

3. PROPOSED ALGORITHMS

In this section, we propose two algorithms for block-sparse vector
recovery: (a) Parallel Cluster-SBL (PC-SBL) algorithm when the
entries within a block are not correlated (B = IB), (b) NSBL al-
gorithm when there is nonzero intra-block correlation (B need not
equal IB).

The conventional SBL framework treats (y,x) in (2) as the com-
plete data, and x as the hidden variable. However, for the reformu-
lated system model in (3), it is necessary to augment the set of hidden
variables x with t = [tT1 , . . . , t

T
M ]T since t is also hidden [18]. Ac-

cordingly, the complete information is given by (y, t,x), and (t,x)
constitute the hidden variables. Since closed-form expressions for
the maximum likelihood estimates of the unknown parameter γ can-
not be obtained, we adopt the iterative EM algorithm for estimating
γ, as follows:

E-step : Q
(

γ|γ(r)
)

= Et,x|y;γ(r) [log p(y, t,x;γ)]

M-step : γ(r+1) = argmax
γ∈R

B×1
+

Q
(

γ|γ(r)
)

. (4)

The E-step in (4) requires the computation of p(t,x|y;γ(r)), which
is given by

p(t,x|y;γ(r)) = p(x|t,y;γ(r))p(t|y;γ(r))

= p(x|t;γ(r))p(t|y;γ(r)). (5)

Hence, the E-step can be rewritten as

E-step : Q
(

γ|γ(r)
)

= Et|y;γ(r)

︸ ︷︷ ︸

Et

Ex|t;γ(r)

︸ ︷︷ ︸

Ex

[log p(y, t,x;γ)]. (6)

To compute Q(γ|γ(r)), we first compute the posterior distribution
p(t|y;γ(r)) using the likelihood p(tm|xm) = N (Φmxm,βmσ2IN )
for 1 ≤ m ≤ M , and the prior p(x;γ) = N (0,ΓB). Given
H = 1M ⊗ IN , where 1M is a M length vector of ones, and
y = Ht, we have p(t|y;γ(r)) = N (µt,Σt), where

µt = (R+ΦBΓBΦT
B)H

T (H(R+ΦBΓBΦT
B)H

T )−1y

Σt = (R+ΦBΓBΦ
T
B)− (R+ΦBΓBΦT

B)H
T

(H(R+ΦBΓBΦT
B)H

T )−1H(R+ΦBΓBΦ
T
B). (7)

Here,ΦB ∈ R
NM×BM is a block diagonal matrix withΦ1, . . . ,ΦM

along the diagonal, and ΓB = B⊗Γ, where Γ = diag(γ). The diag-
onal matrixR hasmth diagonal entryRm = βmσ2IN . Note that the
posterior mean µt ∈ R

MN×1 consists ofM vectors, µt1 , . . . ,µtM

such that Hµt = y, i.e., y =
∑M

m=1 µtm . Further, the posterior
distribution p(x|t;γ(r)) depends on the correlation between the
vectors x1, . . . ,xM . In the following subsection, we provide an
algorithm for block-sparse vector recovery when B = IB .

3.1. Parallel Cluster-SBL:B = IB

In the literature on block-sparse vector recovery, past work has
mainly focused on the case where the sparse vectors are uncorre-
lated, i.e., B = IB [8, 9]. The PC-SBL algorithm proposed in this
subsection is also designed to handle such a scenario.

When x1, . . . ,xM are uncorrelated, we have p(x|t;γ) =
∏M

m=1 p(xm|tm;γ). This decomposes the block-sparse recovery
problem in (2) into a multiple measurement vector problem [17],
where the goal is recovering group-sparse vectors x1, . . . ,xM from
multiple measurements µt1 , . . . ,µtM . The posterior distribution
of xm is given by p(xm|tm;γ(r)) = N (µxm ,Σxm ), where

µxm = β−1
m σ−2ΣxmΦT

mtm and Σxm =
(

ΦT
mΦm

βmσ2 + Γ(r)−1
)−1

.
Using the posterior distribution computed above, the update for γ is
obtained as follows:

γ
(r+1) = argmax

γ∈R
B×1
+

Et,x|y;γ(r) [log p(t,x;γ)] = argmax
γ∈R

B×1
+

(c′

− Et|y;γ(r)Ex|t;γ(r) [
xT Γ−1

B
x

2 + 1
2 log |ΓB |]) (8)

In the above expression, log |ΓB | simplifies as M log |Γ| and
xTΓ−1

B x =
∑M

m=1 x
T
mΓ−1xm. Further, Ex|t;γ(r) [xT

mΓ−1xm] =

Tr(Γ−1(Σxm + µxmµ
T
xm

)). Substituting for µxm , we obtain the
overall optimization problem in the M-step as

γ
(r+1) = argmin

γ∈R
B×1
+

(c′ + M
2 log |Γ|+ 1

2

M
∑

m=1

Tr(Γ−1Σxm )

+ Tr
(

Γ−1 ΣxmΦT
mRmΦmΣxm

β2
mσ4

))

, (9)

whereRm = Σtm + µtmµ
T
tm , Σtm ∈ R

N×N is themth entry of
blkdiag(Σt) and blkdiag(A) returns the block diagonal matrices of
A. Maximizing (9) w.r.t. γ, we get

γ
(r+1) =

1
M

M∑

m=1

diag
(

Σxm +
ΣxmΦT

mRmΦmΣxm

β2
mσ4

)

. (10)
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The proposed PC-SBL and the cluster-SBL algorithm [12] are
mathematically equivalent for the case when B = IB . However,
the PC-SBL approach allows for parallel implementation of the al-
gorithm, since the block-sparse vector is recovered by solving M
parallel problems. Further, from (10), we see that the overall M-step
is simply the average of the hyperparameter updates obtained from
theM parallel problems.

A drawback of the PC-SBL algorithm is that it cannot handle the
case when B &= IB , since the inner expectation Ex does not split as
M separate problems unless B = IB . In the following subsection,
we derive a novel NSBL algorithm for block-sparse vector recovery
with intra-block correlation.

3.2. Nested SBL:B need not equal IB

In this subsection, we model the intra-block correlation using a first-
order AR model, and propose an NSBL algorithm to learn the un-
known parameters γ and the correlation coefficient ρ. The first or-
der AR model is a widely accepted model, and is used in a variety
of applications [19–21]. It also has the advantage that it avoids over-
fitting [13] and allows for a Kalman filtering based learning frame-
work. The evolution of themth group-sparse vector is modeled as

xm = ρxm−1 + um, m = 1, . . . ,M, (11)

where the driving noise um is distributed as um(i) ∼ N (0, (1 −
ρ2)γ(i)), ρ ∈ R is the AR coefficient and 0 ≤ ρ ≤ 1. Overall,
this leads to a common correlation matrix given by B1 = . . . =
BB = B = Toep([1, ρ, . . . , ρM−1]), where Toep(a) represents the
symmetric Toeplitz matrix defined by its first row a [13]. The state
space model for tm and xm is given as

tm = Φmxm + nm, (12)
xm = ρxm−1 + um, m = 1, . . . ,M. (13)

Since x1, . . . ,xM are group-sparse, from the above model, we have

p(t,x1, . . . ,xM ;γ) =
M
∏

m=1

p(tm|xm)p(xm|xm−1;γ), (14)

where p(x1|x0; γ) ! p(x1;γ). Using (14), the posterior distri-
bution of the sparse vectors p(x1, . . . ,xM |t; γ(r)) is computed us-
ing the recursive Kalman Filter and Smoother (KFS) equations for
1 ≤ m ≤ M as follows [22, 23]:

form = 1, . . . ,M do
Prediction: x̂m|m−1 = ρx̂m−1|m−1 (15)

Pm|m−1 = ρ2Pm−1|m−1 + (1− ρ2)Γ (16)

Filtering: Gm = Pm|m−1Φ
T
m

(

σ2IN +ΦmPm|m−1Φ
T
m

)−1

(17)
x̂m|m = x̂m|m−1 +Gm(tm −Φmx̂m|m−1) (18)
Pm|m = (IB −GmΦm)Pm|m−1, (19)
end
for j = M,M − 1, . . . , 2 do
Smoothing: x̂j−1|m = x̂j−1|j−1 + Jj−1(x̂j|m − x̂j|j−1) (20)

Pj−1|m = Pj−1|j−1 + Jj−1(Pj|m −Pj|j−1)J
T
j−1 (21)

end,

µt,Σt

ExEt
M-step

γ(r+ k

K
), ρ(r+

k

K
)

γ(r+ k

K
), ρ(r+

k

K
)

γ(r+1), ρ(r+1)

y

xm|M ,Pm|M , 1 ≤ m ≤ M

γ̂, ρ̂

Fig. 2. Illustration of the inner and outer EM loops, which consist of
Ex and Et, respectively.

where Jj−1 = ρPj−1|j−1P
−1
j|j−1 and Gm is the Kalman gain ma-

trix. The above mentioned KFS equations are initialized by set-
ting x̂0|0 = 0, i.e., a zero vector, and P0|0 = Γ. The E-step re-
quires the computation of Ex1,...,xM |t;γ(r) [xjx

T
j−1] ! Pj,j−1|m +

x̂j|mx̂T
j−1|m form = M,M − 1, . . . , 2, which we obtain from [22]

as follows:

Pj−1,j−2|m = Pj−1|j−1J
T
j−2

+JT
j−1(Pj,j−1|m − ρPj−1|j−1)Jj−2. (22)

The above recursion is initialized using Pm,m−1|M = ρ(IB −
GmΦm)Pm−1|m−1. Note that xi|M and Pi|M , 1 ≤ i ≤ M repre-
sent the posterior mean and covariance of x given t, respectively.

The expectation Et involves computing p(t|y;γ(r)) using (7).
As mentioned earlier, ΓB is given by Γ = B ⊗ Γ. The KFS equa-
tions in (15)-(23) constitute the Ex step, after which we compute
Et. However, due to the recursive nature of the inner E-step, Ex,
the expectation of µxm w.r.t. the posterior density of t is a recursive
function of tm, . . . , t1. As M increases, the complexity of com-
puting such a recursive expectation becomes prohibitive. In order to
circumvent this problem, we employ an alternate technique, known
as the Nested EM approach [15]. This monotonically convergent
approach allows us to simplify the overall algorithm into an inner
and outer EM loop, while the unknown parameter γ is the common
factor between the two loops. We call this algorithm as the NSBL
algorithm, where the nested E- and M-steps are given as

E-step : Q
(

γ|γ(r+ k
K

),γ(r)
)

= Et|y;γ(r)

[

E
x1,...,xM |t;γ

(r+ k
K

) [log p(y, t,x1, . . . ,xM ;γ)]

]

M-step : γ(r+k+1
K

) = argmax
γ∈R

B×1
+

Q
(

γ|γ(r+ k
K

),γ(r)
)

. (23)

The inner EM loop is initialized by γ
(r+ 0

K
) = γ

(r). Note that,
when γ is updated in every iteration, only the inner E-step (Ex =
E

x1,...,xM |t;γ
(r+ k

K
) [·]) is updated. The overall NSBL algorithm is

executed by nesting one EM loop within the other, as depicted in
Fig. 2. The inner EM loop consists of Ex and the corresponding
posterior distribution is given by (15)-(19). Further, the M-step for
the inner EM loop is given by [16]

γ(r+
(k+1)

K
)(i) = 1

M

(
M
∑

j=2

Mj|M (i,i)

(1−ρ2)
+M1|M (i, i)

)

(24)

for 1 ≤ i ≤ B, whereMj|M ! Pj|M +x̂j|M x̂T
j|M+ρ2(Pj−1|M +

x̂j−1|M x̂T
j−1|M ) − 2ρ(Pj,j−1|M + x̂j|M x̂T

j−1|M ) and M1|M !
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Fig. 3. MSE of the proposed algorithm as compared to cluster-SBL
(CSBL), least-squares (Oracle estimator) and SBL, with M = 8,
B = 32 and ρ = 0.8.

P1|M + x̂1|M x̂T
1|M . After K iterations of the inner EM loop, we

obtain γr+
K
K = γ

r+1, which affects the posterior distribution of t.
The outer EM loop consists of updating the posterior distribution of
t given in (7).

An update step for the unknown correlation coefficient ρ can
also be incorporated into the M-step of the NSBL algorithm. The
correlation coefficient ρ(r+

(k+1)
K

) in the (r + (k+1)
K

)th iteration is
obtained as a solution to the cubic equation

(2B(M − 1))ρ3 + Tr {T2 +T3} ρ
2 − Tr {T2 +T3}

− [2B(M − 1)− 2Tr {T1 +T4)}]ρ = 0, (25)

where the matrices T1 through T4 are defined as

T1 = Γ−1∑M
j=2[Pj|M + x̂j|M x̂T

j|M ], (26)

T2 = Γ−1∑M
j=2[Pj,j−1|M + x̂j|M x̂T

j−1|M ], (27)

T3 = Γ−1∑M
j=2[Pj,j−1|M + x̂j−1|M x̂T

j|M ], (28)

T4 = Γ−1∑M
j=2[Pj−1|M + x̂j−1|M x̂T

j−1|M ]. (29)

Among the possible solutions of the above cubic equation, we pick
the ρ ∈ R that satisfies 0 ≤ ρ ≤ 1.

Using a flop-count analysis [24], we note that the computations
in cluster-SBL are dominated by the E-step, which incurs a computa-
tional complexity ofO(N2MB). On the other hand, NSBL consists
of two EM loops, where the maximum complexity of the outer and
inner EM loop are O(N2MB) and O(MB3), respectively. Typi-
cally, in the nested EM approach, the number of inner EM iterations
are fixed, so that the outer EM loop is guaranteed to converge, and
the inner EM loop ensures likelihood increase [15]. Consequently,
the complexity of the NSBL algorithm is dominated byO(N2MB).
However, since the number of outer EM iterations are far lower than
that of cluster-SBL, the NSBL entails a lower computational com-
plexity than the cluster-SBL approach.

In the following section, we demonstrate the efficacy of the pro-
posed algorithms using Monte Carlo simulations.

4. SIMULATION RESULTS

The experimental set-up used to evaluate the Mean Square Error
(MSE) and the support recovery performance of the proposed al-
gorithms is as follows. We consider a block-sparse vector of length
256 consisting of B = 32 blocks of length M = 8 each, with 5
nonzero blocks. We set the value of βm = 1/M . In each trial, the
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Fig. 4. Success rates of the NSBL and CSBL algorithms, withM =
8, B = 32 and ρ = 0.99 (left) and 0.8 (right).

matrix Φ is generated as a random underdetermined (N < MB)
measurement matrix, whose entries are i.i.d. and standard Bernoulli
({+1,−1}) distributed. For fair comparison, we fix the number of
iterations of the cluster-SBL [12] to 125, and the number of inner
and outer EM loop iterations of the NSBL algorithm to 5 and 25,
respectively. The outcome of the experiment is averaged over 1, 000
trials.

In Fig. 3, we compare the MSE performance of the proposed
NSBL algorithm with the cluster-SBL [12], SBL and the oracle
least-squares estimator, i.e., the least squares estimator which is
aware of the support of x. We see that the MSE performance of
NSBL algorithm is 2 dB better than the CSBL algorithm, while
being very close to the MSE performance of the oracle estimator. A
similar trend is observed at different Signal to Noise Ratios (SNR)
and N . The SBL algorithm fails to recover the block-sparse vector
for small values of N and SNR, which demonstrates the advantage
of exploiting the block-sparse structure.

In Fig. 4, we plot the support recovery performance of the NSBL
algorithm and the cluster-SBL algorithm at high SNR of 80dB for
ρ = 0.8 and 0.99. We see that NSBL algorithm has a better sup-
port recovery performance at smaller values ofN , even with ρ being
learnt by the algorithm. However, as N increases, the two algo-
rithms have similar performance. In the cluster-SBL approach, we
use the heuristic algorithm to estimate ρ in the unknown-ρ case [12].
We see that the performance degradation due to the learning of ρ is
marginal, which makes the NSBL algorithm particularly attractive
for practical implementations.

5. CONCLUSIONS

In this work, we proposed novel algorithms for the recovery of
block-sparse vectors with intra-block correlation from underdeter-
mined noisy linear measurements. First, we reformulated the block-
sparse vector recovery problem as a group-sparse vector recovery
problem by introducing hidden variables. Using the reformulated
framework, we proposed the PC-SBL algorithm for the scenario
when the nonzero blocks of the block-sparse vector has uncorre-
lated entries. We showed that, unlike the cluster-SBL algorithm,
the proposed PC-SBL approach allows for parallel implementation.
Next, we proposed the NSBL algorithm for the case when the entries
of a non-zero block are correlated. In contrast to the cluster-SBL
approach, we were able to provide closed-form EM updates for es-
timating the correlation coefficient. Using simulations, we showed
that the NSBL algorithm offers nearly the same performance as the
oracle estimator, with respect to MSE, and an improved support
recovery performance compared to the cluster-SBL approach.
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