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ABSTRACT
This paper studies distributed averaging of arbitrary vectors
in the presence of network interference by casting an alge-
braic structure over the interference. While communicating
locally with its neighbors for consensus, each agent causes an
additive interference, lying on a low-dimensional subspace,
in other communication links. We consider a particular case
when this interference subspace depends only on the inter-
ferer, referred to as uniform outgoing interference. We show
that consensus is possible in a low-dimensional subspace of
the initial conditions whose dimension is complimentary to
the largest interference subspace across all of the agents. In
this context, we derive a global information alignment and a
local pre-conditioning, followed by local consensus iterations
to ensure subspace consensus. We further provide the condi-
tions under which this subspace consensus recovers the exact
average. The analytical results are illustrated graphically to
describe the setup and the information alignment scheme.

Index Terms— Average-consensus, Information align-
ment, Interference subspaces, Signal recovery

1. INTRODUCTION

Distributed averaging of information at geographically dis-
persed agents has been a significant of recent work, see e.g.
see [1–9]. When the inter-agent communication is noiseless
and interference-free, the protocol and related results can be
found in [10]. A number of papers, including [11–13], sub-
sequently consider average-consensus in a setting where the
inter-agent communication is assumed to be imperfect. Refer-
ence [14] considers consensus with link failures and channel
noise. Subsequently, [15] considers consensus with asymmet-
ric links and with asymmetry in packet losses. Consensus un-
der stochastic disturbances is considered in [16], while [17]
studies a natural superposition property of the communica-
tion medium and uses computation codes to achieve energy
efficient consensus. In [18], a similar interference scenario
is considered for average-consensus. Related work also in-
cludes [19,20], which exploits full duplex communication for
group consensus where two-way communication is enabled
at the same time and faster convergence is reported.

This work has been partially supported by NSF CAREER award # CCF-
1350264 and NSF award # CCF-1319653.

1.1. RELATION TO PRIOR WORK

In contrast to the past work outlined above, we focus on an
algebraic model for network interference. While communi-
cating locally with its neighbors, each agent causes an addi-
tive interference, belonging to a low-dimensional subspace,
in other communication links. This (low-dimensional) inter-
ference subspace, in general, depends on both the commu-
nication link and the interfering agent. A fortiori, it is clear
that if the interference by an agent is persistent in all dimen-
sions, then there is no way to recover perfect consensus un-
less schemes similar to interference alignment [21] are used.
In such interference alignment schemes, the data is projected
onto higher dimensions such that the interferences and the
data lie in different low-dimensional subspaces; clearly, re-
quiring an increase in the communication resources.

On the other hand, if the interference from each agent
lies in (possibly different) low-dimensional subspaces, the
problem we address is whether one can exploit this low-
dimensionality for consensus. Subsequently, we address
how much information can be recovered when the collec-
tion of local interferences span the entire Rn? In this paper,
we consider uniform outgoing interference, where the in-
terference caused by an agent lies in a subspace that only
depends on the interfering agent. In this context, we show
that interference-free consensus is possible with a global
information alignment and a local pre-conditioning scheme.

The rest of the paper is organized as follows: Notation
is set in Section 1.2. Section 2 formulates the problem and
Section 3 describes our approach. We provide a graphical
illustration in Section 4, and Section 5 concludes the paper.

1.2. Notation and Preliminaries

We use lowercase bold letters to denote vectors and uppercase
italic letters for matrices. We use the symbols 1n and 0n to
denote the n-dimensional column vectors of all 1’s and all 0’s,
respectively. The identity and zero matrices of size n are de-
noted by In and 0n⇥n, respectively. We assume that a net-
work of N agents is given by a communication graph, G =
(V, E), where V denotes the set of agents, and E is the col-
lection of ordered pairs, (i, j), i, j 2 V , such that agent j can
send information to agent i. From this graph, we denote the
set of agents that can send information to agent i as Ni.
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2. PROBLEM FORMULATION

We consider average-consensus in a multi-agent network, G,
when the interagent communication is subject to unwanted in-
terference. Unwanted interference is where the desired com-
munication, qj 2 Rn, from agent, j 2 V , to agent, i 2 V , has
an additive unwanted component, zij 2 Rn, coming arbitrar-
ily from the agents in V . In particular, every communication
link, j ! i or (i, j) 2 E , incurs the following interference:

z

ij =
X

m2V
bmij�

m
ijq

m, (1)

where: bmij = 1, if agent m 2 V interferes with j ! i com-
munication, and 0 otherwise; and �m

ij 2 Rn⇥n is the inter-
ference gain. What agent i actually receives from agent j
is thus: qj

k +
P

m2V bmij�
m
ijq

m
k , at time k. This interference

model can be studied in the following three special cases:
Uniform Interference: �m

ij = �, i.e., the interference is uni-
form across all agents and links, see our related work in [22];
Uniform Outgoing Interference: �m

ij = �m, i.e., the interfer-
ence subspaces only depend on interferers;
Uniform Incoming Interference: �m

ij = �i, i.e., the interfer-
ence subspaces only depend on the receivers.

In this paper, we consider the case of uniform outgoing
interference; some extensions are considered in [23]. In the
rest of the paper, we explicitly assume the following:

(a) No agent, i 2 V , knows its interfering neighbors over
any j ! i channel, j 2 Ni.

(b) Each interferer, m 2 V , knows a set of basis vectors that
spans the null space, ⇥�m , of its interference gain ma-
trix, �m 2 Rn⇥n. We assume that dim(⇥�m) = �0  n.

This interference setup is shown in Fig. 1: Agent, j, trans-
mits, qj

k, at time k to agent i. This transmission, qj
k, reaches

the intended receiver, i, as the unaltered intended transmis-
sion, qj

k, plus projected interfering transmissions, �mq

m
k .
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Fig. 1. Uniform outgoing interference: Note that interference
on j ! i link may also be caused by the transmitting agent, j,
i.e., agent m1 can be agent j.

Given the above interference model, the standard protocol
for average-consensus, [10, 24], implemented on the multi-

agent network is given by, (k � 0, i 2 V):

q

i
k+1 =

X

j2Ni

wij

 
q

j
k +

X

m2V
bmij�mq

m
k

!
, (2)

where q

i
0 2 Rn is the agent i’s initial condition.It is evi-

dent that interference is only incurred on the links allowed by
the underlying communication graph, G, i.e., when wij 6= 0,
which, in general, is non-zero for each j 2 Ni for average-
consensus to be successful [10]. The above protocol, Eq. (2),
reduces to the standard case [10], when there is no interfer-
ence, i.e., bmij = 0, for all i, j,m, and converges to the average
of the initial conditions:

lim
k!1

q

i
k =

1

N

NX

j=1

q

j
0, x

j
0 2 Rn, (3)

under the typical assumptions [10, 24] on the weight ma-
trix, W = {wij} 2 RN⇥N , and the communication graph, G.
However, when there is interference, i.e., bmij 6= 0, it can
be verified that, in general, the standard protocol in Eq. (2)
diverges. This is because the spectral norm of W is 1, and
any non-zero input, in general, makes Eq. (2) diverge.

The goal of this paper is to consider consensus in the pres-
ence of interference, Eq. (2), not only to establish conver-
gence, but further to explicitly characterize the steady-state.

3. UNIFORM OUTGOING INTERFERENCE

To establish consensus in the presence of interference, our
first step is global information alignment. To this aim, each
initial condition, qi

0 2 Rn, is projected on a subspace, S0,
with projection matrix, IS0 , i.e., xi

0 = IS0q
i
0. The goal of

this paper is to characterize this signal subspace, S0, under
the given structure on the interference subspaces, �i’s (recall
Assumption (b)). We will show that there exists an IS0 on
which interference-free consensus can be achieved. In the
following, we implement consensus on the projected initial
conditions, xi

0’s, and subsequently, characterize IS0 to estab-
lish the relationship with the original initial conditions, qi

0’s.
Given our interference model, Fig. 1 and Assumptions

(a)-(b), we note that each receiving agent, i, receives the in-
terference as a linear combination,

P
m2V bmij�mx

m
k , of the

interferers. In this setting, agent i is unable to perform an
operation to cancel the interference signal (recall Assump-
tion (a)). Interference cancelation thus has to be enabled
within the transmission, i.e., influenced by the interferers
themselves. With this insight, we modify each agent’s trans-
mission by Tj 2 Rn⇥n, for all j 2 V; agent i thus receives

Tjx
j
k +

X

m2V
bmij�mTmx

m
k , (4)

on the link (i, j) at time k. These local transformations, Ti’s,
are subsequently referred to as pre-conditioners. The struc-
ture of these (local) transformations is illustrated in Fig. 2.
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Fig. 2. Uniform Outgoing Interference, only depends on
the interfering agent; the blocks, Tm, are the (local) pre-
conditioners at each agent to enable interference cancellation.

To establish the main results, consider the following (lo-
cally transformed) consensus protocol:

x

i
k+1 =

X

j2Ni

Wij

 
Tjx

j
k +

X

m2V
bmij�mTmx

m
k

!
, (5)

where Wij 2 Rn⇥n is the coefficient (matrix) that agent i
assigns to agent j’s state, xj

k; recall that in the standard form,
Eq. (2): Wij = wijIn. From Eq. (5), we now have

x

i
k+1 =

X

j2Ni

WijTjx
j
k +

X

m2V
Bim�mTmx

m
k , (6)

where Bim =
P

j2Ni
Wijbmij . Note that in this protocol,

each agent i 2 V preconditions its information using the ma-
trix Ti, such that it may pass unharmed through the interfer-
ence subspace, �i. Let us now recall Assumption (b) where
we assumed that each agent, i, knows the �0-dimensional null
space, ⇥�i , of its corresponding interference gain, �i. We
have the following result:

Lemma 1. For any matrix, IS0 , with rank �0. There exists a
full rank matrix, Ti, such that

�iTiIS0 = 0n⇥n. (7)

Proof. Without loss of generality, denote the SVD of �i =
UiSiV >

i , where the first n� �0 diagonals of Si are non-zero.
Similarly, let the SVD of IS0 = US0SS0V

>
S0

, where the non-
zero singular values of IS0 are the last �0 diagonal elements
of SS0 . Define

Ti =
h
eVi | bVi

i
U>
S0
, (8)

where �bVi = ⇥�i , and eVi is chosen such that Ti is full
rank; the symbol ‘�’ denotes the column span. That a full
rank, Ti, exists is always guaranteed because all of the �0
columns of bVi are linearly independent. One such choice
is Ti = ViU>

S0
; however, knowing only the null space, bVi,

suffices, and the lemma follows.

The following lemma characterizes the dynamics of the
information-aligned consensus.

Lemma 2. For some 0  �0  n, let each outgoing interfer-
ence matrix, �i 2 Rn⇥n, have rank n� �0. Let IS0 2 Rn⇥n

be the projection matrix that projects the initial conditions
in Rn, on S0, where dim(S0) = �0. There exist Ti at each i,
and Wij’s for all (i, j) 2 E such that Eq. (6) becomes

x

i
k+1 =

X

j2Ni

wijx
j
k,

at each i 2 V , when x

i
0 2 S0.

Proof. Without loss of generality, we assume that S0 = RA,
where RA denotes the range space of some A 2 Rn⇥n, such
that dim(RA) = �0. Let

IS0 = A†A, (9)

where IS0 is the orthogonal projection that projects any ar-
bitrary vector in Rn on S0. Let the projection of the initial
conditions, qi

0 2 Rn, on S0 be x

i
0 = IS0q

i
0 and choose Ti to

be the local invertible preconditioning, as given by Lemma 1;
we thus have �iTix

i
0 = �iTiIS0q

i
0 = 0n, 8i. Choose

Wij = wijT
�1
j . (10)

From Eq. (6), we have

x

i
k+1 =

X

j2Ni

wijx
j
k +

X

m2V
Bim�mTmx

m
k .

We now show that xi
k 2 S0 for all i, k, by induction. Con-

sider k = 0, then

x

i
1 =

X

j2Ni

wijx
j
0 +

X

m2V
Bim�mTmx

m
0 =

X

j2Ni

wijx
j
0,

which is a linear combination of vectors in S0 and thus
is in S0. Assume that xi

k 2 S0, 8i, and some k, leading
to �iTix

i
k = �iTiIS0x

i
k = 0n. Then for k + 1:

x

i
k+1 =

X

j2Ni

wijx
j
k +

X

m2V
Bim�mTmx

m
k =

X

j2Ni

wijx
j
k,

8i 2 V , which is a linear combination of vectors in S0 at each
agent, and the lemma follows.

With this lemma, the following theorem describes the main
result on uniform outgoing interference.

Theorem 1. Let ⇥�i denote the null space of �i, and
let dim(⇥�i) = �0, 8i 2 V . In the presence of uniform outgo-
ing interference, the protocol in Eq. (5) recovers the average-
consensus in a �0-dimensional subspace, S0, of Rn, when we
choose Ti according to Lemma 1, and Wij = wijT

�1
j , at

each agent, i 2 V .
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The proof1 follows from Lemma 2 and consensus in the pres-
ence of uniform outgoing interference, Eq. (5), converges to

x

i
1 =

1

N

NX

j=1

x

j
0 =

1

N

NX

j=1

IS0q
j
0, (11)

with q

i
0 2 Rn, 8i 2 V. Note that the application of Theo-

rem 1 in a completely distributed manner requires that each
agent, i 2 V , knows the pre-conditioners, {Tj}j2Ni , only in
its neighborhood; and thus is completely local. In addition,
all agents are required to agree on the signal subspace, IS0 ,
which implies a global information alignment. This informa-
tion can be safely assumed to be known at each agent.

The protocol described in Theorem 1 can be illustrated
with the help of Fig. 2. Notice that a transmission from any
agent, i 2 V , passes through agent i’s dedicated precondi-
tioning matrix, Ti. The network (both non-interference and
interference) sees only Tix

i
k at each k. Since the interference

is only a function of the transmitter (uniform outgoing), all
of the agents ensure that a particular signal subspace, IS0 , is
not corrupted by the interference channel. The significance
here is that even when the interferences are misaligned such
that �i2V�i = Rn, the protocol in Eq. (5) recovers the av-
erage in a �0 = dim(⇥�i) dimensional subspace. On the
other hand, the null space of �i2V�i may very well be 0-
dimensional. For example, if each �i is rank 1, Eq. (5) recov-
ers the average in an n � 1 dimensional signal subspace. We
now briefly capture some straightforward generalizations:
(1) Perfect Consensus: If the agent initial conditions, qi

0, lie
in a �0-dimensional subspace of Rn, then Theorem 1 re-
covers perfect consensus.

(2) Principal/Selective Consensus: If the agent initial condi-
tions, qi

0, lie in the range space of some matrix with (or-
dered) singular values, �1,�2, . . . ,�n. Then the initial
condition subspace, S0, can be chosen to recover consen-
sus in any arbitrary �0 non-zero singular values.

(3) Time-varying scenario: The interference model can
be easily adjusted for time-varying interference sub-
spaces, �i,k’s, and Theorem 1 can be accordingly ad-
justed via time-varying pre-conditioners, Ti,k’s.

4. GRAPHICAL ILLUSTRATION

This section illustrates Theorem 1. Consider a network
of N = 10 agents, each with a randomly chosen initial condi-
tion (i.c.) in R3 such that each i.c. belongs to the range space
of a rank 2 matrix, A. From Lemma 2, the projection, IS0 ,
is given by A†A, with x

i
0 = IS0q

i
0 = q

i
0; the i.c.’s and

their average are shown as blue squares and a white diamond,
respectively, in Fig. 3 (a). Uniform outgoing interference
at each agent is chosen as one of the three 1-dimensional
subspaces (with 2-dimensional null-spaces) such that each

1Theorem 1 can be easily adjusted for arbitrary rank interferences by
choosing �0 = mini2V{dim(⇥�i )}.

subspace appears at some agent in the network, see Fig. 3 (b).
From Lemma 1, each agent chooses a pre-conditioner, Ti,
to project its transmission on the null space of its own in-
terference, see Fig. 3 (c) where the transmissions over k are
shown. Subsequently, each receiver, i 2 V , receives mis-
aligned data, Tjx

j , from each of its neighbors, j 2 Ni, and
translates back to the i.c. subspace, IS0 , via T�1

j that is incor-
porated in the consensus weights, Wij = wijT

�1
j . Resulting

consensus iterates in IS0 are shown in Fig. 3 (d) where the
average is locally computed as described in Theorem 1.

Fig. 3. Illustration of Theorem 1: (a) Two-dimensional sig-
nal space, IS0 , in R3; (b) One-dimensional interference sub-
spaces with �0 = 2-dimensional null spaces; (c) Agent
transmissions aligned in the corresponding null spaces over
time, k; (d) Consensus iterates after the translations by T�1

j .

5. CONCLUSIONS

In this paper, we cast an algebraic structure over the interfer-
ence incurred in a multi-agent collaborative network. Each
agent while implementing consensus with its neighbors si-
multaneously interferes with other agents implementing the
same consensus iterations. Under uniform outgoing interfer-
ence, we provide an innovative information alignment scheme
that utilizes local preconditioning to reach consensus on a
low-dimensional subspace, even if the collection of local in-
terferences span the entire Rn. That only a local protocol
achieves this is somewhat surprising.
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