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ABSTRACT

We apply the OSCAR (octagonal selection and clustering al-
gorithms for regression) in recovering group-sparse matrices
(two-dimensional—2D—arrays) from compressive measure-
ments. We propose a 2D version of OSCAR (2OSCAR) con-
sisting of the `1 norm and the pair-wise `∞ norm, which is
convex but non-differentiable. We show that the proximity
operator of 2OSCAR can be computed based on that of OS-
CAR. The 2OSCAR problem can thus be efficiently solved by
state-of-the-art proximal splitting algorithms. Experiments on
group-sparse 2D array recovery show that 2OSCAR regular-
ization solved by the SpaRSA algorithm is the fastest choice,
while the PADMM algorithm (with debiasing) yields the most
accurate results.

Index Terms— group sparsity, matrix recovery, proximal
splitting algorithms, proximity operator, signal recovery.

1. INTRODUCTION

The problem studied in this paper is the classical one of re-
covering X from

Y = AX + W, (1)

where A ∈ Rm×n is a known sensing matrix, X ∈ Rn×d
the original unknown matrix/2D-array, Y ∈ Rm×d is the ob-
served data, and W ∈ Rm×d denotes additive noise. In many
cases of interest, we have m < n, making (1) an ill-posed
problem, which can only be addressed by using some form
of regularization that injects prior knowledge about the un-
known X. Classical regularization formulations seek solu-
tions of problems of the form

min
X

F (X) + Φ(X), (2)

or one of the equivalent (under mild conditions) forms

min
X

Φ(X) s.t.F (X) ≤ ε, or min
X

F (X) s.t.Φ(X) ≤ ε, (3)

where F (X) is the data-fidelity term and Φ(X) is the regu-
larizer, the purpose of which is to enforce certain properties
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on X, such as sparsity or group sparsity, and ε and ε are non-
negative parameters.

Problem (1) is more challenging than the widely studied
linear inverse problem of recovering a vector x ∈ Rn from

y = Ax + w, (4)

where A ∈ Rm×n is also a known sensing matrix, y ∈ Rm
is the observed vector, and w ∈ Rm is additive noise. Com-
paring with (4), the matrix X of interest in (1) is always as-
sumed to be, not only sparse, but also to have a particular
sparse structure. For instance, in the multiple measurement
vector model [1], [2], [3], X is an unknown source matrix
that should be row sparse; in group LASSO [4], [5], [6], X
is a coefficient matrix that is also enforced to be row sparse;
in multi-task learning [7], [8], X is a task parameter matrix,
which is usually assumed to be row or/and column sparse. In
this paper, we pursue more general sparsity patterns for X,
that is, the arrangement of each group of nonzeros in X is not
limited to rows and/or columns, but may include row/columns
segments, blocks, or other groups of connected non-zero ele-
ments. Before addressing the question of whether or not there
are any available regularizers able to promote this kind of
group sparsity, we first briefly review existing group-sparsity-
inducing regularizers.

In recent years, much attention has been devoted not only
to the sparsity of solutions, but also the structure of this spar-
sity [9]. In other words, not only the number of non-zeros in
the solutions, but also how these non-zeros are located, are
of interest. This research direction has lead to the concept
of group/block sparsity [4], [10], or more general structured
sparsity patterns [11], [12], [13]. A classical model for group
sparsity is the group LASSO [4], which, making use of more
information than the original LASSO [14] (namely, the struc-
ture of the groups) is able to simultaneously encourage spar-
sity and group sparsity. In addition, the sparse group LASSO
approach, proposed in [15] uses a regularizer that consists
of an `1 term plus the group LASSO regularizer, thus unlike
group LASSO, it not only selects groups, but also individual
variables within each group.

It has also been observed that in some real-world prob-
lems, it makes sense to encourage the solution, not only to be
sparse, but also to have several components sharing similar
values. To formalize this goal, several generic models have
been proposed, such as the elastic net [16], the fused LASSO
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Fig. 1. Illustration of LASSO, elastic net, fused LASSO and
OSCAR

[17], and the octagonal shrinkage and clustering algorithm
for regression (OSCAR) [18].

The level curves of several of the regularizers mentioned
in the previous paragraph (for the 2D case) are shown in
Fig. 1. The figure illustrates why these models promote vari-
able grouping (unlike LASSO). Firstly, the regularizer of the
elastic net [16] consists of an `1 term and an `2 term, thus si-
multaneously promoting sparsity and group-sparsity, in which
the former comes from the sparsity-inducing corners (see Fig.
1) while the latter from its strictly convex edges, which cre-
ates a grouping effect similar to a quadratic/ridge regularizer.
Secondly, the regularizer of the fused LASSO is composed
of a `1 term and a total variation term, which encourages
successive variables (in a certain order) to be similar, making
it able to promote both sparsity and smoothness. Thirdly, the
OSCAR regularizer (proposed by Bondell and Reich [18])
includes an `1 term and a pair-wise `∞ term, where the latter
promotes equality (in absolute value) between each pair of
variables.

There are some recent variants of the above group-sparsity
regularizers, such as the weighted fused LASSO, presented
in [19]. The pair-wise fused LASSO [19], which uses the
pair-wise term of OSCAR, extends the fused LASSO to cases
where the variables have no natural ordering. A novel graph-
guided fused LASSO was proposed in [20], where the group-
ing structure is modeled by a graph. A Bayesian version of the
elastic net was developed in [21]. Finally, an adaptive group-
ing pursuit method was proposed in [22], but the underlying
regularizer is neither sparsity-promoting nor convex.

The fused LASSO, elastic net, and OSCAR regularizers
all have the ability to promote sparsity and variable group-
ing. However, as pointed out in [23], OSCAR outperforms the
other two models in terms of grouping. Moreover, the fused
LASSO is not suitable for group according to magnitude, and
the grouping ability of the convex edges of the elastic net is
inferior to that of OSCAR. Thus, this paper will focus on
the OSCAR regularizer to solve the problems of group-sparse
matrix recovery.

In this paper, we propose a two-dimensional (matrix) ver-
sion of OSCAR (2OSCAR) for group-sparse matrix recovery.
Solving OSCAR regularization problems has been addressed
in our previous work [24], in which, six state-of-the-art prox-
imal splitting algorithms: FISTA [25], TwIST [26], SpaRSA
[27], ADMM [28], SBM [29] and PADMM [30] are inves-
tigated. Naturally, we build the relationship between OS-
CAR and 2OSCAR, and then address 2OSCAR regularization
problems as in [24].

Terminology and Notation
We denote vectors or general variables by lower case let-
ters, and matrices by upper case ones. The `1 norm of a
vector x ∈ Rn is ‖x‖1 =

∑n
i=1 |xi| where xi represents

the i-th component of x, and that of a matrix X ∈ Rn×d
is ‖X‖1 =

∑n
i=1

∑d
j=1

∣∣X(i,j)

∣∣ where X(i,j) the entry
of X at the i-th row and the j-th column. Let ‖X‖F =(∑n

i=1

∑d
j=1X

2
(i,j)

)1/2
be the Frobenius norm of X.

We now briefly review a fundamental object of convex
analysis, the proximity operator, which will be used below.
Let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖. Let f : H → [−∞,+∞] be a function and Γ be the
class of all lower semi-continuous, convex, proper functions
(not equal to +∞ everywhere and never equal to −∞). The
proximity operator [31] of λ f (where f ∈ Γ and λ ∈ R+) is
defined as

proxλf (v) = arg min
x∈H

(
λf (x) +

1

2
‖x− v‖2

)
. (5)

2. RECOVERING GROUP-SPARSE MATRICES

2.1. OSCAR and its 2D Version (2OSCAR)

The OSCAR criterion is given by [18]

min
x∈Rn

1

2
‖y −Ax‖22 + λ1 ‖x‖1 + λ2

∑
i<j

max {|xi|, |xj |}︸ ︷︷ ︸
ΦOSCAR(x)

,

(6)
where the `2 term seeks data-fidelity, while the regularizer
ΦOSCAR (x) consists of an `1 term (promoting sparsity) and a
pair-wise `∞ term ((n(n − 1))/2 pairs in total) encouraging
equality (in magnitude) of each pair of elements |xi| and |xj |.
Thus, ΦOSCAR (x) promotes both sparsity and grouping. Pa-
rameters λ1 and λ2 are nonnegative constants controlling the
relative weights of the two terms. If λ2 = 0, (6) becomes the
LASSO, while if λ1 = 0, ΦOSCAR becomes a pair-wise `∞ reg-
ularizer. Note that, for any choice of λ1, λ2 ∈ R+, ΦOSCAR (x)
is convex and its ball is octagonal in the 2-D case. In the 2D
case, the 8 vertices of this octagon can be divided into two cat-
egories: four sparsity-inducing vertices (located on the axes)
and four equality-inducing vertices (see Fig. 1). Fig. 2 depicts
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the a data-fidelity term and ΦOSCAR (x), illustrating its possible
effects.

Fig. 2. Illustration of the `2 term and ΦOSCAR (x) in the n =
2 case. In this example, for the same least square solution
(ATA)−1ATy, the high correlation contour is more likely to
hit the equality-inducing (grouping) vertex, whereas the low
correlation contour “prefers” the sparsity-inducing vertex.

As discussed in Section 1, compared with group LASSO,
OSCAR doesn’t require a pre-specification of group struc-
ture; compared with fused LASSO, it doesn’t depend on a
certain order of the variables; compared with the elastic net,
it has a stronger equality-inducing ability. All these features
make OSCAR a convenient regularizer in many applications.
A fundamental building block for using OSCAR is its prox-
imity operator, proxΦOSCAR

, which can be obtained exactly or
approximately by the grouping proximity operator and the ap-
proximate proximity operator [24], respectively.

To address the inverse problem (1), we propose a matrix
version of OSCAR, termed 2OSCAR, given by

min
X∈Rn×d

1

2
‖Y −AX‖2F + Φ2OSCAR (X) (7)

where A ∈ Rm×n, Y ∈ Rm×d and

Φ2OSCAR (X) = ΦOSCAR

(
vec (X)

)
(8)

with vec denoting the vectorization function, which trans-
forms a matrix into a vector by stacking the columns on top
of each other.

Observing that, for any matrix Z, we have ‖Z‖2F =
‖vec(Z)‖22, we can write proximity operator of 2OSCAR as

proxΦ2OSCAR
(Z) = vec−1

(
proxΦOSCAR

(
vec (Z)

))
. (9)

where proxΦOSCAR
can be obtained by the algorithm proposed

in [24] and vec−1 is the inverse of the vectorization function,
that is, it takes a nd vector and yields an n× d matrix.

2.2. Algorithms

In the 2OSCAR problem in (7), it is clear that the objective
function is convex (since both terms are convex) and coercive
(that is, it goes to∞ as ‖X‖ → ∞), thus the set of minimizers
is not empty.

To solve (7), we investigate six state-of-the-art proximal
splitting algorithms: FISTA [25], TwIST [26], SpaRSA [27],
ADMM [28], SBM [29] and PADMM [30]. Due to limitation
of space, we next only detail SpaRSA, since it has been ex-
perimentally shown to be the fastest one. However, we will
report below experimental results with the aforementioned six
algorithms.

SpaRSA [27] is a fast proximal splitting that uses the step-
length selection method of Barzilai and Borwein [32]. Its ap-
plication to solve 2OSCAR problems leads to the following
algorithm:

Algorithm SpaRSA for 2OSCAR
1. Set k = 1, η > 1, α0 = αmin > 0, αmax > αmin, and X0.
2. V0 = X0 −AT (AX0 − Y ) /α0

3. X1 = ProxΦ2OSCAR/α0
(V0)

4. repeat
5. Sk = Xk −Xk−1

6. Rk = ATASk
7. α̂k = (Sk)TRk

(Sk)TSk

8. αk = max {αmin,min {α̂k, αmax}}
9. repeat
10. Vk = Xk −AT (AXk − Y ) /αk
11. Xk+1 = ProxΦ2OSCAR/αk

(Vk)
12. αk ← ηαk
13. until Xk+1 satisfies an acceptance criterion.
14. k ← k + 1
15. until some stopping criterion is satisfied.

A common acceptance criterion in line 13 requires the ob-
jective function to decrease; see [27] for details.

2.3. Debiasing

As is well known, the solutions obtained under 2OSCAR
(and many other types of regularizers) are attenuated/biased
in magnitude. Thus, it is common practice to apply debiasing
as a postprocessing step; i.e., the solutions obtained by, say
the SpaRSA algorithm provides the structure/support of the
estimate and the debiasing step recovers the magnitudes of
the solutions. The debiasing method used in SpaRSA [27] is
also adopted in this paper. Specifically, the debiasing phase
solves

X̂debias = arg min
X

(
‖AX−Y‖2F

)
s.t. supp(X) = supp(X̃)

(10)

where X̃ is the estimate produced by the SpaRSA (or any
other) algorithm and supp(X) denotes the set of indices of the
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non-zero elements of X. This problem is solved by conjugate
gradient procedure; see [27] for more details.

3. EXPERIMENTS

All the experiments were performed using MATLAB on a 64-
bit Windows 7 PC with an Intel Core i7 3.07 GHz processor
and 6.0GB of RAM. The performance of the different algo-
rithms is assessed via the following five metrics, where E is
an estimate of X):
• Mean absolute error, MAE = ‖X−E‖1 /(nd);
• Mean square error, MSE = ‖X−E‖2F /(nd);
• Position error rate,

PER =

n∑
i=1

d∑
j=1

∣∣∣∣sign
(
X(i,j)

)∣∣− ∣∣sign
(
E(i,j)

)∣∣∣∣ /(nd).

• Elapsed time (TIME).
We consider the experiments on recovery of a 100 × 10

matrix X with different styles of groups – blocks, lines and
curved groups, consisting of positive and negative elements.
The observed matrix Y is generated by (1), in which the vari-
ance of the noise W is σ2 = 0.16. The sensing matrix A is a
65× 100 matrix with components sampled from the standard
normal distribution. There are 100 nonzeros in the original
100 × 10 matrix, with values arbitrarily chosen from the set
{−7,−8,−9, 7, 8, 9} (Fig. 3).

Table 1. Results of metrics
Metrics TIME (sec.) MAE MSE PER

debiasing yes no yes no yes no -
FISTA 4.37 4.26 0.0784 0.477 2.45 0.202 0.1%
TwIST 5.10 4.45 0.0799 0.480 2.47 0.202 0.2%
SpaRSA 2.25 2.26 0.0784 0.477 2.44 0.202 0.0%
ADMM 6.65 6.60 0.0786 0.477 2.44 0.206 0.2%
SBM 6.32 6.22 0.0784 0.477 2.45 0.202 0.1%
PADMM 6.01 5.97 0.0762 0.456 2.42 0.182 0.0%

We run algorithms mentioned above (FISTA, TwIST,
SpaRSA, SBM, ADMM, PADMM), with and without debi-
asing. The stopping condition is ‖Xk+1 −Xk‖ / ‖Xk+1‖ ≤
0.001, where Xk represents the estimate at thek-th iteration.
We set λ1 = 0.5 and λ2 = 0.0024. Other parameters are
hand-tuned in each case for the best improvement in MAE.
The recovered matrices are shown in Fig. 3 and the quantita-
tive results are reported in Table 1.

We can conclude from Fig. 3 and Table 1 that the 2OS-
CAR criterion solved by proximal splitting algorithms with
debiasing is able to accurately recover group-sparse matrices.
Among the algorithms, the SpaRSA is the fastest, while the
PADMM obtains the most accurate solutions.

Fig. 3. Original and recovered matrices

4. CONCLUSIONS

We have used the OSCAR regularizer to recover group-
sparse matrix with arbitrary groups from compressive mea-
surements. A matrix version of the OSCAR (2OSCAR) has
been proposed and solved by six state-of-the-art proximal
splitting algorithms: FISTA, TwIST, SpaRSA, SBM, ADMM
and PADMM. Experiments on group-sparse matrix recovery
show that the 2OSCAR regularizer solved by the SpaRSA
algorithm has the fastest convergence, while the PADMM
yields the most accurate estimates.
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