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ABSTRACT

The computational complexity of a problem arising in the
context of sparse optimization is considered, namely, the
projection onto the set of k-cosparse vectors w.r.t. some
given matrix Ω. It is shown that this projection problem is
(strongly) NP-hard, even in the special cases in which the
matrix Ω contains only ternary or bipolar coefficients. Inter-
estingly, this is in contrast to the projection onto the set of
k-sparse vectors, which is trivially solved by keeping only
the k largest coefficients.

Index Terms— Compressed Sensing, Computational
Complexity, Cosparsity, Cosparse Analysis, Projection

1. INTRODUCTION

A central problem in compressed sensing (CS), see, e.g., [1,
2, 3], is the task of finding a sparsest solution to an underde-
termined linear system, i.e.,

min ‖x‖0 s.t. Ax = b, (P0)

for a given matrix A ∈ Rm×n with m < n and right hand
side vector b ∈ Rm, where ‖x‖0 denotes the `0-quasi-norm,
i.e., the number of nonzero entries in x. This problem is
known to be strongly NP-hard, cf. [MP5] in [4]; the same
is true for the variant in which Ax = b is replaced by
‖Ax− b‖2 ≤ ε, see [5, 6].

Two related problems arise in signal and image process-
ing, where the unknown signal x to be estimated from a low-
dimensional observation b = Ax cannot directly be modeled
as being sparse. In the most standard approach, x is assumed
to be built from the superposition of few building blocks or
atoms from an overcomplete dictionary D, i.e., x = Dz,
where the representation vector z is sparse. The problem of
minimizing ‖z‖0 such that ADz = b is obviously also NP-
hard.
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The alternative cosparse analysis model [7] assumes that
Ωx has many zeros, where Ω is an analysis operator. Typ-
ical examples include finite difference operators: They are
closely connected to total variation minimization and defined
as computing the difference between adjacent sample values
(for a signal) or pixel values (for an image). The cosparse
optimization problem of interest reads

min ‖Ωx‖0 s.t. Ax = b, (C0)

and was also shown to be NP-hard [7, Section 4.1].
Due to the hardness of problem (P0), various heuris-

tics have been developed. A popular approach is well-
illustrated by the Iterative Hard Thresholding (IHT) algo-
rithm, which iterates a gradient descent step to decrease the
error ‖Ax̃− b‖2 and a hard-thresholding step, i.e., the (Eu-
clidean) projection onto the set of k-sparse vectors. Under
restricted isometry properties (RIP) on A, the IHT algorithm
can be proven to converge to the solution of (P0) [8, 9]. A
desirable RIP often holds with high probability when A has
i.i.d. sub-Gaussian entries, see, e.g., [10], but is (strongly)
NP-hard to verify in general [11].

Adaptations of IHT and related algorithms to the cosparse
analysis setting have been proposed [12, 13], based on a gen-
eral scheme for unions of subspaces [14]. A key step is the
projection onto the set of k-cosparse vectors, as an analogous
replacement for hard-thresholding.

The main contribution of this note is to show that this pro-
jection is in fact strongly NP-hard in general, which contrasts
with the extremely simple and fast hard-thresholding opera-
tion.

2. COMPLEXITY OF COSPARSE PROJECTION
PROBLEMS

This section is mainly devoted to proving the following cen-
tral result.

Theorem 1. Consider any p ∈ N ∪ {∞}, p > 1, and let
q = p if p < ∞ and q = 1 if p = ∞. Given Ω ∈ Qr×n
(r > n), ω ∈ Qn, and a positive integer k ∈ N, it is NP-hard
in the strong sense to solve the k-cosparse `p-norm projection
problem

min
z∈Rn

{ ‖ω − z‖qp : ‖Ωz‖0 ≤ k }, (k-CoSPp)
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even when ω ∈ {0, 1}n (with exactly one nonzero entry) and
Ω contains only entries in {−1, 0,+1} or {−1, 1}, respec-
tively.

Let us first provide some comments on the statement of
the theorem.

Remark 1. Theorem 1 shows the NP-hardness of (k-CoSPp)
in the strong sense (i.e., (k-CoSPp) is strongly NP-hard).
Thus, since the objective is always polynomially bounded
(never exceeding ‖ω‖pp or ‖ω‖∞), not even a fully polynomial-
time approximation scheme (FPTAS) can exist, unless P=NP.
An FPTAS is an algorithm that, given an approximation fac-
tor ε > 0, computes a solution that has an objective function
value at most (1 + ε) times the minimum value, with running
time polynomial in the encoding length of the instance and
1/ε. Moreover, there also cannot exist a pseudo-polynomial
(exact) algorithm, i.e., one that runs in time polynomial in the
numeric value of the input, but not its encoding length, unless
P=NP; for details, see [4], and also [15].

Remark 2. It is perhaps not immediately clear why the
“min” in (k-CoSPp) is attained, since the constraint set is
not bounded, in general. Nevertheless, the infimum is fi-
nite since the objective is lower-bounded by zero. Moreover,
since z = 0 is always feasible, the optimal value is upper-
bounded by ‖ω‖qp. Since the level set { z : ‖Ωz‖0 ≤ k, 0 ≤
‖ω − z‖qp ≤ ‖ω‖qp } is compact, the infimum is attained,
justifying the use of “min” instead of “inf” in (k-CoSPp).
(See also Remark 6 below.)

Before stating the proof of Theorem 1, we need some pre-
liminaries. Let MINULR=

0 (A,K) be the problem to decide,
for a given matrix A ∈ Qm×n and a positive integer K ∈ N,
whether there exists a vector z ∈ Rn such that z 6= 0 and
at most K of the m equalities in the system Az = 0 are
violated (MINULR stands for “minimum number of unsat-
isfied linear relations”). This homogeneous equality version,
in which the trivial all-zero solution is excluded, was proven
to be NP-complete [16], and even NP-hard to approximate
within any constant factor [17]; more results about the prob-
lem’s approximation complexity can be found in [18]. For the
proof of Theorem 1, we utilize the following result:

Theorem 2 (Theorem 1 and Corollary 2 in [16]). The prob-
lem MINULR=

0 (A,K) is strongly NP-hard, even when A
contains only ternary entries, i.e., A ∈ {−1, 0,+1}m×n, or
for bipolar A ∈ {−1,+1}m×n.

The cited results from [16] are in fact more general than
the statements we use here in that they also hold for inhomo-
geneous systems, where the right hand side vector is part of
the input. Moreover, [16] deals with the complementary prob-
lem of MINULR=

0 , namely the Maximum Feasible Subsystem
(MAXFS) problem (w.r.t. homogeneous linear equality sys-
tems) in which one asks for the largest possible number of si-
multaneously satisfied equalities from a given linear system.

It is easy to see that MINULR and MAXFS are equivalent
when solved to optimality (see also [18]).

Note also that the above two results state NP-hardness
in the strong sense, although this is not made explicit in the
original version [16]. The NP-hardness proofs, however, are
by reduction from the Exact Cover by 3-Sets (X3C) prob-
lem, which is well-known to be strongly NP-hard (see, e.g.,
[4]), and preserve polynomial boundedness of the constructed
numbers as well as of their encoding lengths.

Proof of Theorem 1. Let p ∈ N ∪ {∞}, p > 1, and q = p
if p < ∞ and q = 1 if p = ∞. Given an instance (A,K) of
MINULR=

0 (w.l.o.g., A ∈ Qr×n with r > n), we will reduce
it to n instances of (k-CoSPp).

For all i = 1, . . . , n, we define a k-cosparse projection
instance given by Ω = A, ω = ei and k = K (where ei de-
notes the i-th unit vector inQn). Note that each such instance
obviously has encoding length polynomially bounded by that
of A and K. Writing

f
(p)
i,k := min

z∈Rn
{ ‖ei − z‖qp : ‖Ωz‖0 ≤ k }

and f
(p)
k := min

1≤i≤n
f
(p)
i,k ,

we observe that since z = 0 is always a feasible point, it
holds that f (p)i,k ≤ 1 for all i, and hence f (p)k ≤ 1. We claim

that f (p)k < 1 if and only if there exists a nonzero vector z
that violates at most k = K equations in Az = 0.

1. If f (p)k < 1 (i.e., there exists some i ∈ {1, . . . , n} such
that f (p)i,k < 1) then there exists a vector z such that
‖Ωz‖0 ≤ k and ‖ei − z‖qp < 1 (in particular, zi 6= 0).
But this of course means that at mostK equalities in the
system Az = 0 are violated, i.e., MINULR=

0 (A,K)
has a positive answer.

2. Conversely, assume that there exists a nonzero vector z
that violates at most K equations in Az = 0, i.e.,
‖Ωz‖0 ≤ k and MINULR=

0 (A,K) has a positive an-
swer. We will prove that

f
(p)
k ≤ min

i,λ
‖ei − λz‖qp < 1. (1)

In fact, for an arbitrary scalar λ ∈ R, z′ := λz obeys
‖Ωz′‖0 ≤ k as well. If z contains only one nonzero
component zi, λ can be chosen sucht that z′ = ei and
consequently f (p)k = f

(p)
i,k = 0, which shows the claim.

Thus, it remains to deal with the case in which z con-
tains at least two nonzero components. Consider some i
such that zi 6= 0. Without loss of generality, we can
also assume that zi > 0 (otherwise replace z with−z).
We consider the case p <∞ first. It holds that

‖ei − λz‖pp = ‖λz‖pp − |λzi|p + |1− λzi|p

= |λ|p
(
‖z‖pp − |zi|p

)
+ |1− λzi|p
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for any λ. The function |1− λzi|p is convex (in λ), and
it is easy to see that we have |1− λzi|p ≤ 1 − λzi for
0 ≤ λ ≤ 1/zi. Consequently, for 0 ≤ λ ≤ 1/zi,

|λ|p
(
‖z‖pp − |zi|p

)
+ |1− λzi|p

≤ 1 + |λ|p
(
‖z‖pp − |zi|p

)
− λzi. (2)

Since z contains at least two nonzero components, it
follows that α := ‖z‖pp − |zi|p > 0. Since p > 1,
it is easy to see that |λ|pα − λzi < 0 for sufficiently
small positive λ. In conclusion, there exists a solu-
tion λz with ‖ei − λz‖pp < 1 (and thus f (p)k < 1),
which proves the reverse direction for p <∞.

Finally, for the case p =∞, note that

min
i,λ
‖ei − λz‖∞ ≤ min

i,λ
‖ei − λz‖p̃,

for all 1 < p̃ < ∞, whence we can employ the above
reasoning to reach the same conclusion.

To summarize, we could reduce the NP-hard problem MIN-
ULR=

0 (A,K) to n instances of the k-cosparse projection
problem (k-CoSPp), which therefore is NP-hard as well.
Moreover, by Theorem 2 (and since all numerical values
in the constructed instances obviously remain polynomially
bounded by the input size), the NP-hardness of (k-CoSPp)
holds in the strong sense, even for Ω (= A) with ternary
or bipolar coefficients and, by the construction above, for ω
binary (and indeed, with only one nonzero entry).

Remark 3. The reduction in the proof of Theorem 1 does
not work for 0 < p ≤ 1. Indeed, consider the vector
with all entries equal to 1, z = 1. It is not hard to verify
that ‖ei − λz‖pp = |1− λ|p + (n − 1)|λ|p ≥ 1 for all i
and λ. Thus, mini,λ‖ei − λz‖pp ≥ 1 does not imply z = 0
when p ∈ (0, 1]; vice versa, z 6= 0 does not imply that
mini,λ‖ei − λz‖pp < 1.

Remark 4. It is noteworthy that the claim in the proof of The-
orem 1 is in fact true for every real-valued p > 1. However,
one may encounter irrational (i.e., not finitely representable)
numbers when working with p-th powers for arbitrary real,
or even rational, p. Since retaining finite rational represen-
tations is crucial for NP-hardness proofs, we restricted our-
selves to integer p (or p =∞).

The following result is an immediate consequence of The-
orem 1.

Corollary 1. It is strongly NP-hard to compute a minimizer
for the problem (k-CoSPp), even under the input data restric-
tions specified in Theorem 1. In particular, it is strongly NP-
hard to compute the Euclidean projection

ΠΩ,k(ω) := arg min
z∈Rn

{ ‖ω − z‖2 : ‖Ωz‖0 ≤ k }.
(k-CoSP)

Proof. Clearly, if a minimizer was known, we would also
know the optimal value of (k-CoSPp). Hence, computing a
minimizer is at least as hard as solving (k-CoSPp), and the
complexity results of Theorem 1 carry over directly. In par-
ticular, computing ΠΩ,k(ω) is also strongly NP-hard, since
Theorem 1 applies to the `2-norm (p = 2) and the minimiz-
ers of ‖ω − z‖2 (the objective in (k-CoSP)) are of course the
same as those of ‖ω − z‖22.

Let us comment on a few more subtle aspects concern-
ing (k-CoSPp) and the proof of Theorem 1.

Remark 5. The above reduction from MINULR=
0 is an ex-

ample of what is called a Turing reduction; more commonly
used are Karp reductions, cf. [4, 15]. In the latter, the known
NP-hard problem is reduced to a single instance of the prob-
lem under consideration. For (k-CoSPp) with p ∈ N, p > 1
(excluding the case p = ∞), we could also obtain a Karp
reduction by constructing the instance

Ω̃> := (A>, . . . ,A>) ∈ Qn×rn,

ω̃> := (e>1 , . . . , e
>
m) ∈ {0, 1}n

2

, k̃ := nK,

which is obviously still polynomially related to the input
(A,K) of the given MINULR=

0 instance. Then, defining

f̃
(p)

k̃
:= min

z∈Rrn
{ ‖ω̃ − z‖pp : ‖Ω̃z‖0 ≤ k̃ },

it is easy to see that f̃ (p)
k̃

< n (= ‖ω̃‖pp) if and only if
MINULR=

0 (A,K) has a positive answer. In particular, a
solution can be seen to be comprised of the solutions to the
n separate (k-CoSPp)-problems considered in the Turing re-
duction, stacked on top of each other. We chose the Turing
reduction for our proof of Theorem 1 because it allows us to
conclude NP-hardness even if ω is a unit vector, i.e., binary
with exactly one nonzero entry, and also for p =∞.

Remark 6. The optimization problem (k-CoSPp) could be
replaced by its corresponding decision version:

Does there exist some z ∈ Rnsuch that
‖ω − z‖qp < γ and ‖Ωz‖0 ≤ k ? (k-CoSPp-Dec)

Indeed, the proof of Theorem 1 corresponds to showing hard-
ness of this decision problem for γ = 1; the Karp reduction
sketched in the previous remark would use γ = n.

Note that (k-CoSPp-Dec) is in fact contained in NP (at
least for p = 1, 2, or ∞): The set { z : ‖Ωz‖0 ≤ k }
defined by the constraints yields (exponentially many) affine
subspaces of Rn defined by n − k or more homogeneous
equalities, and the projection of some ω onto it (w.r.t. ‖·‖qp) is
clearly equivalent to that onto one (unknown) of these affine
subspaces. For p = 2, the (Euclidean) projection onto such
spaces has a known explicit formula which keeps all entries
in the solution rational if the input (Ω) is rational. Similarly,

7200



for p = 1 or p = ∞, (k-CoSPp) can be seen as a linear pro-
gram over the unknown correct affine subspace; hence, here,
the solution is also rational.

Thus, for p = 1, 2, or∞, a certificate of a positive answer
exists that has encoding length polynomially bounded by that
of the input. Hence, by Theorem 1 and the above discussion,
we have that (k-CoSPp-Dec) is in fact strongly NP-complete
for p = 2 or p =∞. (The case p = 1 is not covered by Theo-
rem 1, and for the remaining values of p it is not immediately
clear how one could guarantee the existence of a certificate
with polynomially bounded encoding length.)

3. CONCLUSIONS

Theorem 1 and Corollary 1 show that no polynomial algo-
rithm to compute the projection onto the set of k-cosparse
vectors can exist unless P=NP.

In theoretical algorithmic applications of the Euclidean k-
cosparse projection operation (k-CoSP) in [12, 13], it had so
far been assumed that the projection problem (k-CoSP2) can
be approximated efficiently. While our result refutes this as-
sumption to a certain degree (cf. Remark 1), it is not clear
whether other (general polynomial-time) approximation algo-
rithms exist that may still be useful in practice despite exhibit-
ing theoretical running time bounds that depend exponentially
on (at least) the approximation quality 1/ε.

Moreover, as for most NP-hard problems, there are spe-
cific instances which are known to be much easier to handle
than the general case. For instance, when Ω is the identity
(or, more generally, a unitary) matrix, hard-tresholding—i.e.,
zeroing all but the k entries with largest absolute values—
achieves the projection onto the k-cosparse set w.r.t. any `p-
norm. Other examples include the Euclidean case (p = 2)
when Ω is the 1D finite difference operator or the 1D fused
Lasso operator, respectively: The projection is then achieved
using dynamic programming [13].

For the problem MINULR=
0 (or its minimization vari-

ant, respectively), strong non-approximability results were
derived in [17, 16, 18]; for instance, it cannot be approx-
imated within any constant unless P=NP. However, these
results do not carry over to the k-cosparse projection prob-
lem, since the objectives differ: In the optimization version of
MINULR=

0 , we wish to minimize the number K of violated
equalities, while in (k-CoSPp), the goal is minimizing the
distance of z to a given point (under the constraint that the
number of nonzeros in Ωz does not exceedK). Thus, despite
the link between the two problems exploited in the proof of
Theorem 1, (hypothetical) approximation guarantees for this
distance unfortunately do not yield any (non-)approximability
statements for (k-CoSPp) by means of those for MINULR=

0 .
Thus, it remains a challenge to find (practically) efficient

approximation schemes for the k-cosparse projection prob-
lem (k-CoSPp), or to establish further (perhaps negative) re-
sults concerning its approximability. Other open questions are

the complexity of (k-CoSPp) for 0 < p ≤ 1, or containment
in NP of (k-CoSPp-Dec) for p ∈ N \ {1, 2}, cf. Remarks 3
and 6.
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