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ABSTRACT

State-of-the-art calibration and fusion approaches for spoken term
detection (STD) systems currently rely on a multi-pass approach
where the scores are calibrated, then fused, and finally re-calibrated
to obtain a single decision threshold across keywords. While the
above techniques are theoretically correct, they rely on meta-
parameter tuning and are prone to over-fitting. This study presents
an efficient and effective score calibration technique for keyword
detection that is based on the logistic regression calibration approach
commonly used in forensic speaker identification. The technique
applies seamlessly to both single systems and to system fusion, and
enables optimization for specific keyword detection evaluation func-
tions. We run experiments on a Vietnamese STD task, comparing the
technique with more empirical calibration and fusion schemes and
demonstrate that we can achieve comparable or better performance
in terms of the NIST ATWV metric with a more elegant solution.

Index Terms— spoken term detection, score calibration, score
normalization, system fusion

1. INTRODUCTION

A pressing need exists for intelligent information retrieval (IR)
from the rapidly increasing amounts of audio data being created
and broadcasted daily from various sources. Spoken term detec-
tion (STD) aims to locate a specified term, defined as a sequence
of one of more words, rapidly and accurately in large, potentially
heterogeneous audio archives, and can be used as a first step to more
sophisticated IR technologies.

Most state-of-the-art STD systems involve two major compo-
nents: indexing and search. The indexing step processes the audio
data by an automatic speech recognition (ASR) system which creates
a searchable text index with scores. The search step, given an input
query term, decides which instances to return to the user. Because
the queries may contain out-of-vocabulary (OOV) terms that would
be absent in a word-based index, or query terms may be missing in
the ASR output due to errors, most STD systems utilize indices that
combine word and phonetic information, and thus enable searching
to match pronunciation patterns in the index [1]. Since STD is for-
mulated as a detection task, with a metric that considers both misses
and false alarms, the system must decide whether to return a hy-
pothesized instance or not by applying a threshold on the scores,
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which are typically word posteriors provided by the ASR system.
Nevertheless, these scores are often not a good indicator of word
correctness (confidence). Prior work focused on computing word
confidence by using the word posterior along with other features [2],
or aimed to apply a keyword specific threshold [3].

In this work, inspired by speaker identification and forensics re-
search, we propose a principled approach for word posterior calibra-
tion that follows the Bayesian decision theory and can handle either
an individual system, or multiple systems by fusing the scores into
a single calibrated score, as well as any available side information
(e.g., noise levels, speaker information, etc). The approach opti-
mizes system performance for a desired operating point.

2. TASK DESCRIPTION
The National Institute of Standards and Technology (NIST) created
the STD evaluation [4] initiative to provide a benchmark testbed for
this task. The IARPA Babel program recently supported a follow-up
open evaluation with a focus on the rapid development on a sur-
prise language with limited data. The evaluation plan is described
in [5]. This work focused on the FullLP + BaseLR + NTAR condi-
tion: the system development used only data from the NIST release
IARPA-babel107b-v0.7, and the system did not reprocess the test
audio after the query keywords were provided. The system perfor-
mance was evaluated on the provided query terms, using the Actual
Term-Weighted Value (ATWV) metric, defined in [5]. This metric is
given by 1 minus the following risk function:

R =
1

K

K∑
k=1

Pmiss(k) + βPfa(k) (1)

where k runs over all keywords with at least one reference oc-
currence, β = 999.9, Pmiss = Nmiss(k)/Ntrue(k), and Pfa =
Nfa(k)/NNT(k), with Ntrue(k) denoting the number of reference
occurrences of keyword k, Nmiss(k) the number of missed de-
tections for k, Nfa(k) the number of false detections for k, and
NNT(k) = Tspeech −Ntrue(k). Tspeech is the total amount of evaluated
speech in the test data.

3. STD SCORE CALIBRATION AND FUSION
This section describes the previous and proposed approaches for cal-
ibrating and fusing scores generated by STD systems with the goal
of optimizing the ATWV metric.

3.1. Prior work and baseline systems
Since the ATWV metric was introduced in the NIST STD06 evalua-
tion, various approaches have been designed for selecting the thresh-
old that maximizes ATWV. In [3], the authors explain that the opti-
mal keyword-specific threshold (KST) on the posteriors according
to Bayesian decision theory is given by
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Tpost(k) =
βNtrue(k)

NNT(k) + βNtrue(k)
(2)

The value of Ntrue(k) is unknown during testing and needs to be es-
timated. In [3], Ntrue(k) is estimated as N̂true(k) = CE[count(k)],
where the expected count is obtained as the sum of the posteriors
for all hits of keyword k, and the factor C is estimated on the train-
ing data and accounts for the fact that some keyword detections are
missing due to lattice pruning. In our experiments, we computed
this factor for each system as the ratio of the average Ntrue(k) and
the average E[count(k)] over all keywords in a held-out set of 2000
keywords on the training data. This approach will be referred to as
KSTtrn. For comparison, we report results using the optimal fac-
tor computed on our test data as KSTmax, which provides an upper
bound on the performance of the above thresholding technique.

Besides obtaining an accurate estimate of Ntrue, the second im-
portant assumption made in the KST approach is that the posteriors
for the hits are well calibrated (that is, are proper posteriors). In [6]
the authors introduce a technique called “pcorr mapping” that learns
the true posteriors of the training scores by computing their accuracy
over consecutive bins. The piecewise-constant function that com-
putes pcorr from the score is smoothed by linear interpolation before
being applied to test data. This approach is prone to over-fitting and
requires tuning of the smoothing parameters. For this work we im-
plemented an approach introduced in [7] that uses logistic regression
to learn a linear transformation on the logit of the score. The result-
ing transformed score approximates the log-likelihood ratio (LLR)
of the score given the two classes (correct and incorrect hit). The
class priors found in training are used to transform this LLR into the
required posterior. This approach will be referred to as llrcal.

State-of-the-art STD systems combine the hit lists originating
from multiple ASR systems in a process called system fusion. In
[6], the authors propose an approach for aligning the hits and com-
bining the scores into a fused score in a linear fashion in the posterior
domain by learning weights for different systems in a way that max-
imizes MTWV. Although they obtained good results on the training
set, this technique did not generalize well on test data and obtained
similar performance as rule-based fusion techniques, such as averag-
ing the posteriors of the systems with equal weights, which we refer
to as fusavg . In this technique, missing posteriors in the aligned hits
are assigned a value of 0. As in the case of score calibration, logis-
tic regression has been shown very effective for fusing hit lists from
various STD systems, as described in [7] and [8]. This approach
is our second baseline fusion approach, and will be referred to as
fusllr . All of the fusion experiments described in this paper use the
same procedure to align hits from individual systems, which will be
described in section 3.2.1.

3.2. Proposed Approach
In our proposed approach, the hits generated by the different STD
systems are combined into a fused set of hits using a modified linear
logistic regression approach. When a single system is put through
this process, the output is a set of hits with ’calibrated’ scores.

3.2.1. Aligning Hits from Different Systems

The hits from different STD systems are aligned with each other us-
ing the algorithm described in [7] and [8]. Given a certain utterance
and keyword k, a floating window of 0.8 seconds is shifted across the
waveform. For a certain position of the window, all hits of keyword
k from all systems that fall within that window are collected, keeping
the hit with the highest score for each system. Each window position
in which at least one system had a hit is considered a fused hit and
is labeled as either a correct hit, y = +1, or a false alarm, y = −1,

with the same procedure used during scoring where a tolerance of 1
second is used to align a certain hit with the reference.

For each hit, a feature vector x of dimension 2N is created where
N is the number of individual systems being combined. The first N
values in this vector correspond to the logit function of the posteriors
generated by the individual systems for the hit. If a system does not
produce a hit within the window, a value of M=0 is assigned. The
second set of N values correspond to indicator variables that are set
to one if a system does not generate a hit within the window.

3.2.2. Making Optimal Decisions

Let us first assume we already have a score for each hit computed
as some function of the feature vector x described above. Given
these scores we will make the final decision of converting a hit into
an actual keyword detection by thresholding its score with keyword-
dependent thresholds. The goal is to select the thresholds to mini-
mize the risk given in Eq. (1). This risk is defined by assuming that
a detection can be generated for each keyword every second. That
is, that if the threshold is set low enough, no misses would occur. On
the other hand, our fused hits are defined only over regions in which
at least one of the individual systems had a hit. Taking this into ac-
count, assuming a single hit for each reference keyword is present in
our samples, and discarding a term corresponding to the unrecover-
able misses (keywords that were not found by any individual system)
and the K factor which do not affect the optimal thresholds, we can
rewrite the risk as

R̃ = α

K∑
k=1

p(k)[pc(k)P̃miss(k) + (1− pc(k))P̃fa(k)] (3)

where P̃miss(k) and P̃fa(k) are the probability of miss and false alarm
computed on the fused hits directly. Here we have defined p(k), an
effective prior for each keyword, and pc(k) an effective prior for
correct hit, which allow us to see the risk function as a probability of
error. The constant α takes whatever value is needed to make p(k)
and pc(k) probability distributions. In order for Equations (1) and
(3) to be equivalent the p(k) and pc(k) need to satisfy:

αp(k)pc(k) =
N+1(k)

Ntrue(k)
, αp(k)(1− pc(k)) = β

N−1(k)

NNT(k)
(4)

for all k from 1 to K, where N+1(k) and N−1(k) are the total num-
ber of correct and incorrect hits, respectively. As we will see, we do
need not explicitly solve these equations.

Because we plan to use different thresholds for each keyword,
we can optimize Eq. (3) by minimizing each term in the sum over
k independently. Bayesian decision theory indicates that in order to
minimize this risk, the system should decide the hit is a detection if
and only if:

LLR = log
p(x|y = +1, k)

p(x|y = −1, k) > −logit(pc(k)) = TLLR(k) (5)

where LLR (log-likelihood ratio) is the ratio between the likelihood
of the features assuming that the hit is a correct hit and that the hit
is an incorrect hit. The optimal threshold can be computed using
Equations (4) as:

TLLR(k) = log

(
β
N−1(k)

N+1(k)

Ntrue(k)

NNT(k)

)
(6)

Except for β, all values in this equation are unknown during testing.
Moreover, test keywords are not known during development. Hence,
the first ratio, N−1(k)/N+1(k), is replaced by the corresponding
ratio over all keywords in the training data and the Ntrue(k) is esti-
mated by the expected count as described in section 3.1. For this, a
preprocessing step of standard logistic regression is done to obtain
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the posteriors used to compute the expected count. The scale factor
for theNtrue(k) estimation does not need to be explicitly computed in
this approach since, in the log scale it (approximately) corresponds
to a bias that is automatically and optimally compensated for by the
global bias in the model given by Eq. (7).

The threshold in Eq. (6) can be easily shown to be equivalent
to the one defined in Eq. (2) which operates in the domain of the
posteriors instead of the LLRs. In the next section we will explain
how we estimate the LLRs for the hits given the vector of features x.

3.2.3. Modified Logistic Regression for TWV Optimization

Linear logistic regression is a very common approach for convert-
ing a vector of features into likelihood ratios. The standard logistic
regression assumes that the posteriors for the two classes are given
by P (y|x) = σ(y(ax + b)), where σ(z) is the logistic function
1/(1+e−z), x is the input feature vector for the sample (a hit in our
case), and y is the class label (+1 or −1). Parameters a and b are
obtained by maximizing the log-likelihood of the training data given
by
∑

i logP (yi|xi). It can be easily shown that, given this form for
the posterior, the LLR is simply given by ax+ b− logit(pc) where
pc is, as before, the prior probability of a positive sample (a correct
hit, in our case).

This standard form is not ideal for our purposes because it opti-
mizes the transformation given the priors found in the training data.
As we saw in the previous section, the risk function we are trying to
minimize can be seen as affecting the priors of the classes and the
keywords to some synthetic values given by Equation (4) which are
keyword dependent. We modify the logistic regression approach to
take into account these priors and, hence, optimize the desired risk
function given by Equation (3). We assume the following form for
the posterior for each hit:

P (yi|xi, k) = pi,k = σ(yi(axi + b+ logit(pc(k)))) (7)
where, σ(z) is the logistic function, k is the keyword, xi is the fea-
ture vector for hit i, and yi is its class label. The LLR needed in
Eq. (5) is now given by axi + b and the exponent in (7), axi + b+
logit(pc(k)), can simply be compared to 0 to make the final deci-
sion. The extra term in the definition of the posterior ensures that a
single set of a and b can be found that is optimal over all keywords.
In practice, we also learn a weight for the logit(pc(k)) term along
with a and b. This weight is very close to 1 but not identical, indi-
cating that the model might be compensating for some inaccuracy in
our assumptions. This issue will be investigated in future work.

To obtain the optimal values for the parameters we maximize the
likelihood of the training data, though the expression for the likeli-
hood is modified to take into account for the fact that the priors in
the training data do not necessarily coincide with the synthetic priors
corresponding to the probability of error that we wish to optimize,
given by Eq. (3). The modified likelihood can be shown to be:

L =
∑
k

[∑
i|yi=+1,k log pi,k

Ntrue(k)
+
β
∑

i|yi=−1,k log pi,k

NNT(k)

]
(8)

With this objective function the optimization is done for the effective
priors rather than for the ones found in the data. A standard numer-
ical optimization tools (L-BFGS) is used to optimize this objective
function. This technique will be referred to as TWVcal when applied
to calibrate a single system, and as TWVfusion when applied to fuse
multiple systems.

4. EXPERIMENTAL SETUP
4.1. Data
For this work we used the Vietnamese language package provided
by NIST for the 2013 OpenKWS evaluation. The training data in-

cluded approximately 100 hours, and the development set, on which
we report results, was approximately 10 hours. We used the keyword
set provided for development purposes, which included 200 query
terms. To train the calibration and fusion models, we defined a sep-
arate keyword list of 2000 keywords, non-overlapping with the 200
dev keywords, whose distribution of priors in the dev data resem-
bled those of the dev keywords. The official keyword list used for
the evaluation included about 4000 terms; but for this work, scoring
all the systems on the eval set and eval keyword list was impractical,
so we report development set results.

4.2. ASR Systems
For our experiments we used word indices produced by ASR sys-
tems from SRI and ICSI. SRI targeted the development of multiple
systems and constrained the run-time and memory requirement of
each to produce output from all of them, with the goal of combin-
ing dissimilar indices and thus gaining by system combination. ICSI
targeted the development of a single system that would achieve deep
enough indexing to offer optimal single-system performance.

4.2.1. SRI ASR Systems

The different systems developed at SRI aimed to produce dissimilar
indices by using either different front-end features, different acous-
tic and language modeling approaches and different engines: open-
source Kaldi [9] or the SRI-proprietary DECIPHER software [10],
as shown in Table 1.

For the front-end, we used the standard PLP and MFCC features
but also explored several novel front-ends. All the front-ends used
were augmented with a spline smoothed pitch feature [11] (along its
1st and 2nd derivatives). The MFCCs were also augmented with a
10-dimensional voicing feature vector [12]. The three novel features
explored were:
(1) The Normalized Modulation Cepstral Coefficient (NMCC) [13],
obtained from tracking the amplitude modulations of the sub-band
speech signals in time domain. The produced 52-dimensional vec-
tor was reduced to 20 with principal component analysis (PCA)
(NMCC20).
(2) The Synchronized Damped Oscillator Cepstral Coefficient
(SyDOCC) which models the motion of auditory hair cells as forced
damped oscillators. It obtains instantaneous damped oscillator re-
sponses from a bank of damped oscillators each tuned to a specific
frequency, where the forcing function is a band-limited speech
signal, and synchrony is induced by coupling neighboring forcing
functions after timealignment.
(3) The NMCCs were used as inputs to train a single hidden layer
auto-encoder (AE) using 150 neurons in the hidden layer, with
tan-sigmoid activation function and scaled conjugate gradient as
the learning algorithm. Once trained, we took the 150 dimensional
hidden variables and performed PCA to reduce the dimentionality to
53, ensuring that at least 95% of the information was retained. This
final verctor was used as the AE feature.

Using different options of the above front-ends, SRI trained
three types of acoustic models (AMs): Gaussian Mixture Models
(GMMs) using DECIPHER, and subspace GMMs (SGMMs) and
a deep neural network (DNN), using Kaldi. Each training/test file
(conversation side) was clustered into 2-3 pseudo speaker clusters
using unsupervised agglomerative clustering, to capture possible
cases of a speaker change. Mean, variance and vocal tract length
(VTL) normalization was applied over the pseudo speaker clusters.
For SRIb and SRIe the input features (using 1st, 2nd and 3rd deriva-
tives) were transformed using heteroscedastic linear discriminant
analysis (HLDA) to 39-dimensional feature vector. For the rest of
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SGMM Kaldi systems LDA+MLLT was used, after concatenating
feature vectors from seven frames. We used three-state left-to-right
HMMs to model crossword triphones. For the GMMs, we trained
discriminative models (applying both fMPE and MPE [14]); and for
the SGMMs, we trained discriminatively trained (BMMI) models
[15]. The GMM models were speaker adapted using maximum
likelihood linear regression (MLLR) and the SGMM models using
feature-space MLLR and speaker subspace adaptation.

The language model (LM) used all NIST-provided training data,
about 1 million syllables. SRILM was used to train syllable 3-grams
(syl-3gr) using Kneser-Ney smoothing. We also used an approach
exploring n-gram statistics to extract multiwords (mw) from the
training data. In each iteration, top word pairs were merged into
mws, after considering the geometric mean of the forward bigram
conditional probability between two words and their reverse bigram
probability. More details can be found in [16]. We learned 4130
mws which expanded the vocabulary size to 10006, and trained the
maximum entropy mw-ngram using SRILM toolkit extension [17].

4.2.2. ICSI ASR System

ICSI system [18] used tandem features, pasting cepstral, pitch, voic-
ing and bottleneck (BN) features. An LDA transformation was ap-
plied to the cepstral part of the feature, taking as input a context of 7
spliced static MFCC vectors and trained using the context dependent
states as targets, reducing dimensionality to 30. The 30-dimensional
tandem BN features [19] were obtained using a hierarchical NN.
MLLT and fMLLR transforms were applied to the combined fea-
ture stream. The first two decoding passes were done with a stan-
dard continuous GMM AM with 5k context dependent states and
80k Gaussian components. The third and final decoding pass was
done with an SGMM model with 8k states and 50k sub-states de-
rived from 700 Gaussians. More details are found in [18]. A syl-3gr
LM was estimated using the training transcripts, applying Kneser-
Ney smoothing and interpolationed counts.

Table 1. Summary of the ASR systems used for combination
ID front-end AM LM Adaptation
SRIa PLP Kaldi SGMM syl-3gr from SRIb
SRIb PLP DECIPHER GMM mw-3gr from SRIa
SRIc PLP+NMCC20 DECIPHER GMM mw-3gr from SRIc
SRId Sydocc Kaldi SGMM syl-3gr from SRIa
SRIe MFCC+voic. Kaldi SGMM syl-3gr from SRIa
SRIf AE Kaldi SGMM syl-3gr from SRIa
SRIg MFCC+voic Kaldi DNN syl-3gr n/a
ICSI MFCC+BN GMM+SGMM syl-3gr ICSI

4.3. Calibration
In Figure 1, we report results on calibrating three of our best per-
forming single systems, both in terms of ATWV and MTWV. We
observe that TWVcal obtains similar performance to KSTtrn and
llrcal+KSTtrn on average across all three systems. We observe
small, probably insignificant variations in the relative performance
of each technique across systems. Apart from llrcal+KSTmax which
provides an upper bound on the performance of KST, none of the
techniques consistently outperform the others.

4.4. Fusion
In Figure 2, we report results of fusion of the proposed ASR-based
STD systems. We study two configurations: the first one combines
together all seven SRI’s systems, while the second combines all of
SRI’s and ICSI’s systems. Three types of approaches to fusion are
compared: (1) average fusion on calibrated individual scores, fol-
lowed by a second round of calibration (llrcal+fusavg+llrcal); (2)
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KSTmax$

TWVcal$

llrcal+KSTtrn$

llrcal+KSTmax$

Fig. 1. Calibration results on three of the single systems in terms of
ATWV. The techniques using KSTmax cannot be fairly compared to
others and are therefore shown in grey.

logistic regression-based fusion (fusllr); and (3) the proposed joint
fusion and calibration scheme (TWVfusion). For the TWVfusion

technique we use a single way of choosing the keyword-dependent
thresholds (Section 3.2). For the other two techniques, which re-
turn posteriors, we evaluated three different techniques for selecting
a threshold: KSTtrn, KSTmax and TWVcal. For both configura-
tions of ASR systems, it is interesting to note that TWVfusion and
fusllr+TWVcal obtain similar and competitive performance, and are
by far the best fusion techniques in terms of ATWV in the con-
figuration that include ICSI’s system. When used as a calibration
technique on the fused scores, TWVcal significantly outperforms
KSTtrn in all four cases (two systems configurations, and two fusion
strategies), and KSTmax in three out of four cases. This Table also
shows that fusllr is more efficient than fusavg , especially with ICSI’s
system. We believe that this difference in performance could be due
to the fact that ICSI’s system generates much thicker lattices than
SRI’s systems, which would create many trials with missing scores.
This might be a problem for score averaging because it assumes that
a missing score has zero value. In both TWVfusion and fusllr we
model a bias for missing scores of each modality, which makes these
approaches more robust to fusing heterogeneous systems.
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SRI[a.g]% SRI[a.g]+ICSI%
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llrcal+fusavg+llrcal+KSTtrn%

Fig. 2. Fusion results on two different combinations of systems in
terms of ATWV. The techniques using KSTmax cannot be fairly
compared to others and are therefore shown in grey.

5. CONCLUSION AND FUTURE WORK

In this paper, we present an approach to jointly calibrate and fuse
multiple STD systems in order to maximize the ATWV metric. Our
technique can be applied to single-system score calibration or sys-
tem fusion and provides an approach that is both effective and ele-
gant. We demonstrate that the proposed approach outperforms tradi-
tional methods to system fusion and threshold selection such as av-
erage fusion, logistic regression fusion and keyword specific thresh-
olding of posteriors. Future work will evaluate in more details the
ability of this technique to provide better fusion performance over a
wide range of operating points compared to other score normaliza-
tion schemes.
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