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ABSTRACT

In this work, we present an unsupervised framework to ad-
dress the problem of spotting spoken terms in large speech
databases. The segment-based Bag of Acoustic Words
(BoAW) framework proposed is inspired from the Bag of
Words (BoW) approach widely used in text retrieval systems.
Since this model ignores the sequence information in speech
samples for efficient indexing of the database, a Dynamic
Time Warping (DTW) based temporal matching technique is
used to re-rank the results and restore the time sequence in-
formation. The speech data is stored efficiently in an inverted
index which makes the retrieval very fast, thus making this
framework particularly useful for searching large databases.
We address the issue of choosing the appropriate size of
the segment of speech for reliable indexing. Comparison
with other query-by-example spoken term detection systems
shows that the proposed system outperforms the rest.

Index Terms— query-by-example, spoken term detec-
tion, Bag of Acoustic Words, template matching, unsuper-
vised learning, segment ranking

1. INTRODUCTION

In the digital era, huge amount of audio data is being pro-
duced and consumed every day in a large variety of languages.
This may be in the form of music, TV news, classroom lec-
tures, audio books, podcasts, call center archives and even
personal audio recordings. With this exponential growth of
digital multimedia content, audio search becomes essential
for fast retrieval of information from audio archives. Query-
by-example (QbE) spoken term detection (STD) is a speech
search framework in which spoken queries are used to retrieve
matching portions from a speech database.

State of the art approaches rely on automatic speech
recognition (ASR) frameworks which have shown good
performance in well-resourced contexts [1, 2]. But, such
LVCSR-based systems can only be built for resource-rich
languages where huge amounts of transcribed speech data is
available to train statistical and acoustical models. Another
requirement for good performance of ASR based systems
is the large vocabulary coverage during the training phase

so that out-of-vocabulary (OOV) terms are not presented for
recognition during the searching phase. This may not be pos-
sible in practical systems, thus causing higher word error rates
(WER) and deteriorating the overall performance. Though
some methods to tackle the OOV problem like making the
system vocabulary independent, sub-word unit modeling of
OOV terms, phonetic search frameworks etc. have been
proposed, it continues to be a challenging task [3, 4, 5, 6].

2. RELATION TO PRIOR WORK

Due to various limitations of ASR-based systems, template
matching based methods for QbE STD have been explored
in recent years [7, 8, 9, 10, 11]. In these methods, audio
data is stored as templates that are generated by acoustic-
phonetic models. When a spoken query is presented to the
system, its template is generated, which is then searched in
the database, typically by using a variant of the Dynamic
Time Warping (DTW) algorithm. Recently, the posterior-
gram representation has become a very popular choice for
the template [7, 8, 10, 12]. It is a representation of speech
as a sequence of posterior probability vectors. Each vector
denotes the posterior probability of a speech frame belong-
ing to different classes. Depending on the way these classes
are defined, different posteriorgrams such as phonetic, neural-
network and Gaussian posteriorgrams are obtained.

But the absence of efficient indexing techniques makes
posteriorgram-based systems not scalable for practical use, as
the entire database is searched in a linear fashion even for very
short queries. Recently, some attempts have been made to
address this limitation by using locality sensitive hashes and
subspace-indexing techniques for efficient storage of speech
data [13, 14]. In this work, we propose an inverted index-
ing framework using Gaussian posteriorgrams for achieving
fast reduction of the search space. The segment-based Bag
of Acoustic Words (BoAW) framework proposed is inspired
from the Bag of Words (BoW) model widely used in text re-
trieval systems. In recent years, similar techniques have been
explored in other related fields such as object matching in
videos, word image retrieval etc. which have shown great
potential [15, 16].
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3. BAG OF ACOUSTIC WORDS AND INVERTED
INDEX

The BoAW model used in this work is inspired from the Bag
of Words (BoW) model widely employed in text retrieval sys-
tems. A spoken document can be represented as an unordered
collection of discrete acoustic units. These discrete acous-
tic units are termed as acoustic words. The acoustic words
may be interpreted as the sounds or the frame-wise phonetic
content present in the documents. Each document gets repre-
sented as a bag of discrete acoustic words. Similarly, a spoken
document can be represented as a bag of syllables or a bag
of spoken lexical words. The challenge in these approaches
is to reliably segment speech into syllables or words. The
work presented in this paper can be described as a bag of dis-
crete sounds in which the frame-wise phonetic information
of speech is chosen as the acoustic unit of the BoAW model.
In this work, a GMM-based soft clustering approach is used
which models the speech using a set of Gaussian distributions.
The number of such distributions (K) is predetermined and
can be loosely associated with the number of phonetic units
present in the data.

TheK mean vectors and covariance matrices obtained af-
ter this unsupervised training phase becomes the vocabulary
of the system. This audio vocabulary is then used to quantize
the extracted features by choosing the clusters with the high-
est posterior probabilities. The final representation for a spo-
ken document is the frequency counts or a histogram of the
quantized acoustic features [f1, f2, ...fi, ...fK ], where fi is
the number of occurrences of the ith cluster or acoustic word
in the spoken document and K is the vocabulary size. The
differences in the durations of different spoken documents is
accounted for by normalizing the BoAW histogram with re-
spect to the segment size. From this normalized histogram,
those acoustic words or clusters having frequency above a
threshold (δ) are chosen to represent the document in the in-
verted index. These are termed as ‘significant acoustic words’
of the document. The inverted index is an indexed data struc-
ture which stores a mapping from content to locations in the
database. The location of the document in the database is
associated with the significant acoustic words in the inverted
index. Once the entire database is indexed, the location of ev-
ery spoken document can be determined from the significant
acoustic words obtained from that document.

An important issue to note in this approach is the loss
of temporal information of speech. For example, the words
‘tale’ and ‘late’ may have the same phonetic content and
hence, similar histogram representations, which reduces the
precision of the system during the retrieval task. We address
this issue, while exploiting the computational advantages of
the BoAW approach, as explained in the next section. An-
other crucial point is the duration of a spoken document that
should go into the index. The duration of the segments should
be chosen in such a way that the significant acoustic words
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Fig. 1. (a) Gaussian posteriorgram and (b) normalized BoAW
histogram of a speech segment with K=100, along with his-
togram threshold δ = 0.3 marked in the figure.

obtained from their BoAW histogram should be able to fully
represent these segments. The segment histogram must be
robust enough to reduce the false positive and false negative
rates while maintaining the time taken for retrieval within
practical terms. Detailed experiments are conducted to ob-
tain the optimum segment size to index the documents for
queries of different durations. In this segment-based inverted
indexing paradigm, the term ‘spoken document’ will now be
referred to as a ‘segment’ as it is a segment of speech, along
with its time information (location within a file), that goes
into the index. Figure 1 shows the Gaussian posteriorgram
and BoAW histogram of a segment of length 1s.

4. RETRIEVAL SYSTEM

The task of the retrieval system is to return the best matches
of an audio query from the indexed database. The frame-
wise features are extracted from the query and the BoAW
histogram is generated using GMM clustering. The signifi-
cant acoustic words from the histogram are obtained by us-
ing a threshold (δq), which may be different from the thresh-
old (δ) used while indexing the database. The choice of the
threshold needs to be determined experimentally to balance
the false rejection rate, false acceptance rate and the amount
of the search space reduction achieved. Using the significant
acoustic words obtained from the query, the list of database
segments associated with them are retrieved from the inverted
index. This is a very quick process which helps in locating the
most probable segments in the database which match with the
query.

In the BoAW approach, the sequence information in
speech was ignored while performing efficient database in-
dexing. But, as was mentioned earlier, this reduces the effec-
tiveness of the system due to the possibility of a large num-
ber of false acceptances. Hence, a Dynamic Time Warping
(DTW) approach is used to restore the sequence information
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in the retrieved segments. DTW is performed between the
Gaussian posteriorgrams of the query segment and that of the
most probable database segments. The distance function used
for DTW is:

D(p, q) = −log(p.q) (1)

where p and q are two Gaussian posterior vectors. The dot
product gives the probability of these two vectors drawing
from the same distribution [7].

The ranking of database segments is performed not only
using the DTW score but also including the BoAW histogram
score to form a final merged score. The histogram score of an
indexed database segment is the number of times that segment
is retrieved by the significant acoustic words of the query seg-
ment. For example, suppose a query segment has 50 signifi-
cant acoustic words for a vocabulary size of 100. For each
of these 50 words, the system retrieves the most probable
database segments from the inverted index. Suppose a partic-
ular indexed segment si was retrieved by 40 of these signifi-
cant acoustic words. Then, the histogram score of the segment
si is 40. Higher the histogram score, higher the probability of
the segment being a correct match. The merged score SMi

of
a database segment si is computed as:

SMi = α.SDTWi +
β

SHisti

(2)

where SDTWi
and SHisti are the DTW and histogram scores

of the segment si, respectively, and α and β are scaling pa-
rameters which are determined empirically. Lower values of
the DTW and merged scores are expected from matching por-
tions. Thus, the database segments are ranked in the ascend-
ing order of their merged scores, and are presented as the out-
put of the system (file name and time stamp).

Fig. 2. (a) P@N and (b) MAP scores vs. BoAW histogram
threshold δ with δq=δ, α=0.8, β=10(1-α), γ1=1, γ2=400 and
Q=10.

5. EXPERIMENTS AND EVALUATION

This unsupervised QbE STD framework is tested on the
TIMIT corpus using 30 queries of varying lengths. The
TIMIT corpus is divided into 3 sets: development set (1000
files, 50 minutes), database set (4500 files, 3.8 hours) and
test set (800 files). The development set is used to obtain the
vocabulary using unsupervised GMM training of frame-wise
39-dimensional MFCC features as explained in the previ-
ous sections. Once the GMM is trained for K clusters, the
database set is divided into segments which are added to the
inverted index. Queries presented to the system are excised
from the test set utterances. The generalizing capability of
this framework is evaluated by keeping all the three sets
non-overlapping. A query has, on average, about 5 relevant
occurrences in the database. Hence, the evaluation metrics
used are: i) P@1: Average precision of the top result re-
turned by the system; ii) P@3: Average precision of the top
3 results; iii) P@5: Average precision of the top 5 results;
iv) P@N: Average precision of the top N results, where N
is the number of occurrences of each query in the database;
v) MAP: Mean average precision which is the mean of the
precision scores after each query hit is retrieved.

Table 1. Precision scores for different segment sizes with
threshold δ=0.2.

P@1 P@3 P@5 P@N MAP
Seg.Size = 0.8s 0.5357 0.4405 0.3643 0.3642 0.3294
Seg.Size = 1.0s 0.7333 0.5667 0.4400 0.4405 0.4570
Seg.Size = 1.2s 0.7333 0.6333 0.5200 0.5028 0.5051
Query-guided 0.8000 0.6222 0.4933 0.4789 0.5214

As mentioned earlier, the choice of the segment size be-
comes crucial in the overall performance of the system. To
determine the optimum segment length, we conduct exper-
iments with two kinds of segmentation: query-guided seg-
mentation and hard segmentation. In hard segmentation, the
entire database is indexed prior to query submission by di-
viding it into segments of a pre-determined duration. In this
case, the query may also need to be segmented as its length
may be much larger than the segment duration, which may
result in highly skewed warping paths during the DTW. This
segmentation of a query implies that the database is searched
for those segments which match with each of the query seg-
ments. Hence, the system returns scored results pertaining to
different segments of the query and not for the entire query
altogether. Hence, we need a way of merging the nearby
database segments and obtain a combined score for these por-
tions using their individual segment scores. A novel scoring
strategy is employed which uses the positional weights (w)
and merged scores (SM ) of individual database segments to
obtain the final scores. Each database segment, ranked in the
ascending order of the merged score (SM ), is grouped with its
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Fig. 3. (a) P@N and (b) MAP scores for different query
groups (G) based on duration DG. 0 < DG1 < 0.8s, 0.8s ≤
DG2 < 1.0s, 1.0s ≤ DG3 < 1.2s and 1.2s ≤ DG4 < 1.6s.

(L− 1) neighboring segments to form larger segments called
files. The number of segments (L) in each file is fixed to
match the query length. Suppose N such files are present in
the database. SFi

is the score of file i, taking into account the
positions pij of the L segments within a file along with their
merged scores SMij , j = 1, 2, ..L, which is computed as:

SFi = γ1.(wi1 + SMi1)− γ2
L∑

j=2

1

wijSMij

(3)

where i = 1, 2, ...N and

wij = b
pij − 1

Q
c+ 1; j = 1, 2, ...L (4)

where wij is the positional weight of the jth segment of file
i. Segment index j within a file is obtained by ranking the file
segments using their merged scores. The scaling factors γ1
and γ2 are determined empirically. The quantization factor Q
is used to divide the positional weights, depending on the ini-
tial ranking based on merged scores, into discrete levels. For
example, results 1 through 10 and 11 through 20 are grouped
into different levels, if Q = 10. This scoring criteria, given in
(3), penalizes segments within a file based on their positional
proximity and signal alignment to the best matched segment
within a file. Such positional weighting, when combined with
signal similarity scores, gives a good mechanism to rank dif-
ferent database files.

To compare the performance of the hard segmentation
technique to a scenario where segmentation could be per-
formed after a query is submitted, database is divided into
overlapping segments of duration same as that of the query
and populated into the inverted index. The histogram and
DTW scores are merged and the segments are ranked. This
experiment is conducted to study the correlation between
database segment duration and query length.

6. RESULTS AND DISCUSSION

Figure 2 shows the relationship between P@N and MAP
scores and histogram threshold (δ) with vocabulary size (K)
as 100, query histogram threshold δq=δ and empirically de-
termined scaling factors α=0.8, β=10(1-α), γ1=1, γ2=400.
α is fixed to give greater weightage to the DTW score as
compared to the histogram score. The quantization factor Q
is set as 10. From the figure, we observe that the precision
scores are maximum for δ = 0.2. Table 1 gives precision
scores for different segment sizes when δ = 0.2. For a seg-
ment size of 1.2s, P@N and MAP of 0.5028 and 0.5051,
respectively, are obtained, which outperforms other systems
proposed in literature. Table 2 shows the comparison of the
proposed system with a system which uses a segmental vari-
ation of DTW [8] which is considered as the baseline for our
experiments. To better understand the relationship between
query duration and segment size, queries are grouped into
groups (G) based of their duration (DG). The durations of
the groups are: 0 < DG1

< 0.8s, 0.8s ≤ DG2
< 1.0s,

1.0s ≤ DG3
< 1.2s and 1.2s ≤ DG4

< 1.6s. From figure 3,
we see that precision scores are high when the query duration
is large (groups 1 and 2). Also, for larger durational queries,
segment size nearer to query size gives better results. This
suggests that BoAW histogram representation becomes more
reliable when a greater number of acoustic words are present
in a segment. But segment size cannot be very different from
the query size as it may lead to highly skewed warping paths.
Hence, the segment size and the histogram threshold need to
be chosen carefully to obtain the best results from the system.

Table 2. Comparison of performance

System P@N
SDTW (#Examples=1) 0.4133

BoAW+DTW (proposed) 0.5028

7. CONCLUSION

In this paper, a new unsupervised framework for performing
query-by-example spoken term detection was proposed. The
Bag of Acoustic Words (BoAW) model enables efficient stor-
age of speech in an inverted index data structure which helps
in fast retrieval of matching segments. Further, temporal sim-
ilarity is obtained by employing the Dynamic Time Warping
technique. A new method of ranking audio documents which
combines positional weights and similarity scores was also
proposed. It was observed that the system gives very good
performance when the query size is larger. In future, better
segmentation techniques, such as those based on similarity of
neighboring speech frames, need to be explored to help store
the speech more efficiently.
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