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ABSTRACT

For query-by-example spoken term detection (QbE-STD), genera-
tion of phone posteriorgrams requires labelled data which would be
difficult for languages with low resources. One solution is to build
models from rich resource languages and use them in the low re-
source scenario. However, phone classes are not language universal
and alternate representation such as articulatory classes is explored.
In this paper, we use articulatory information and their derivatives
such as bottle-neck (BN) features (also referred to as articulatory BN
features) for QbE-STD. We obtain Gaussian posteriorgrams of artic-
ulatory BN features in tandem with the acoustic parameters such as
frequency domain linear prediction cepstral coefficients to perform
the search. We compare the search performance of articulatory and
phone BN features and show that articulatory BN features are a bet-
ter representation. We also provide experimental results to show that
low amounts (30 mins) of training data could be used to derive artic-
ulatory BN features.

Index Terms— Query-by-example spoken term detection,
multi-layer perceptron, articulatory features, bottle-neck features,
low resource.

1. INTRODUCTION

The task of a query-by-example spoken term detection (QbE-STD)
is to search a spoken query in a spoken audio data. A traditional
QbE-STD approach is to convert spoken audio into a sequence of
symbols and then perform text based search. In [1–3], the audio is
first converted to a sequence of symbols using large vocabulary con-
tinuous speech recognition (LVCSR) and then lattice based search
techniques are incorporated. LVCSR based approaches have been
shown to be accurate for well resourced languages. However, such
approaches are not scalable for languages where there is no avail-
ability or the resources to build an LVCSR system. To overcome
this limitation dynamic time warping (DTW) based techniques are
exploited for QbE-STD [4–8].

Phone [4, 5] and Gaussian posteriorgrams [6–8] are some of the
feature representations used for DTW-based QbE-STD. Generation
of phone posteriorgrams require labelled data which would be dif-
ficult for languages with low resources. One solution is to build
models from rich resource languages and use them in the low re-
source scenario [5,9]. However, phone classes are not language uni-
versal and thus alternate representation such as articulatory classes
is explored. Articulatory classes are language independent repre-
sentation of speech sounds and classifiers could be trained on rel-
atively low amounts of data [10, 11]. Articulatory information has
been extensively used in LVCSR for (a) Robust recognition in noisy
conditions [11–13], and (b) Multi-lingual and cross-lingual speech
recognition [14–16]. In [17], spoken audio is decoded to a sequence

of articulatory classes which is used to prune out the spoken audio
before performing the DTW-based search.

In this paper, we use articulatory information and their deriva-
tives such as bottle-neck (BN) features (also referred to as articu-
latory BN features) for QbE-STD. BN features have been used ex-
tensively in multi-lingual LVCSR and were shown to improve the
word error rate [18–21]. In the context of QbE-STD, BN features
of phone classes have been used to build a hierarchical neural net-
work structure (referred to as BN universal context network) [22].
To our knowledge, BN features of articulatory classes have not been
explored in the context of DTW-based QbE-STD.

The contributions of our work are as follows: (a) Use of articu-
latory information and its derivatives such as BN features for QbE-
STD, (b) Use of BN features in tandem with the acoustic parameters
such as frequency domain linear prediction cepstral coefficients to
compute Gaussian posteriorgrams, (c) Comparison of Gaussian pos-
teriorgrams obtained using articulatory and phone BN features, and
(d) Experimental results to show that low amounts of training data
could be used to obtain articulatory BN features.

The organization of the paper is as follows: Section 2 describes
the database used in this work. In Section 3, we describe the DTW-
based algorithm used to perform the search. Section 4 describes
the acoustic parameters of the speech signal and the computation of
Gaussian posteriorgrams. Section 5 describes the use of articulatory
BN features for QbE-STD and its comparison with the phone BN
features. In Section 6, we provide experimental results to show that
20-30 mins of training data can be used to derive articulatory BN
features.

2. DATABASE

The experiments conducted in this work use MediaEval 2012 data
which is a subset of Lwazi database [23]. The data consists of audio
recorded via telephone in 4 of 11 South African languages. We con-
sider two data sets, development (dev) and evaluation (eval) which
contain spoken audio (reference) and spoken query data. The statis-
tics of the audio data is shown in Table 1.

Table 1: Statistics of MediaEval 2012 data.

Data Utts Total(mins) Average(sec)
dev reference 1580 221.863 8.42
dev query 100 2.372 1.42
eval reference 1660 232.541 8.40
eval query 100 2.537 1.52

All the evaluations are performed using 2006 NIST evaluation
criteria [24, 25] and the corresponding actual term weighted val-
ues (ATWV) and maximum term weighted values (MTWV) are re-
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ported. To compute the ATWV and MTWV, an average miss proba-
bility and false alarm probabilities are computed for all the queries.
In this paper, an optimum threshold to retrieve the search results is
computed using the dev dataset. This threshold is then applied on
the eval dataset to obtain the ATWV.

3. QBE-STD USING NON-SEGMENTAL DTW

QbE-STD is performed using a variant of DTW-based search re-
ferred to as non-segmental DTW (NS-DTW) [5, 8, 26]. Let Q =
{q1,q2, . . . ,qi, . . . ,qn} be a spoken query (or query) containing
n feature vectors. Let R = {u1,u2, . . . ,uj, . . . ,um} be the spo-
ken audio (or reference) containing m feature vectors.

Each of these feature vectors represent a Gaussian, articulatory
or phone posteriorgrams as computed in Sections 4 and 5. The dis-
tance measure between a query vector qi and a reference vector uj

is given by:

d(i, j) = −log
(

qi

||qi||
· uj

||uj||

)
(1)

We define the term search hit as the region in the reference R
that is likely to contain the query Q. The query can start from any
point in the reference. Initially, S(1, j) = d(1, j), where d(1, j) is
the distance measure. The entries in the rest of the similarity matrix
for NS-DTW is given by Eq. (2).

S(i, j) = min


d(i, j) + S(i− 1, j − 2)

T (i− 1, j − 2) + 1
d(i, j) + S(i− 1, j − 1)

T (i− 1, j − 1) + 2
d(i, j) + S(i− 1, j)

T (i− 1, j) + 1

 , (2)

where T is called the transition matrix. T (i, j) represents the
number of transitions required to reach i, j from a start point. In
order to detect the start and end time stamps of the search hit, we
obtain the reference index that contains the best alignment score,
i. e., the end point of the search hit is given by j = min

j
{S(n, j)} for

j = 1, 2, ...,m. Once the end point j is obtained, the corresponding
start point could be obtained by a path trace back. Thus we obtain
the location of the query in the reference.

4. FEATURE REPRESENTATION USING GAUSSIAN
POSTERIORGRAMS

In general, Gaussian posteriorgrams are obtained by a two step
process [7, 8]. In the first step, acoustic parameters such as Mel-
frequency cepstral coefficients (MFCC) or frequency domain linear
prediction cepstral coefficients (FDLP) are extracted from the speech
signal. In the second step, Gaussian posteriorgrams are computed
by training a Gaussian mixture model (GMM) on the speech data
and the posterior probability obtained from each Gaussian is used
to represent the acoustic parameter. In this paper, we train a GMM
containing 128 Gaussians to obtain 128 dimensional Gaussian pos-
teriorgrams.

In [8], we show that the Gaussian posteriorgrams of FDLP per-
form better than that of MFCC. In MFCC, the short-time spectral
properties of the speech signal is captured. In order to capture the
temporal dynamics of the speech signal, FDLP was developed [27–
29].

A 25 ms window length with 10 ms shift is considered to ex-
tract 13 dimensional features along with delta and acceleration co-
efficients for MFCC and FDLP. An all-pole model of order 160
poles/sec and 37 filter banks are considered to extract FDLP. A set
of 26 filter banks are used for computing MFCC.

Table 2: MTWV obtained using 128 dimensional Gaussian poste-
riorgrams (GPost.) of 39 dimensional MFCC and FDLP. The val-
ues indicated in the brackets show the ATWV computed for the eval
dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

MFCC 39 128 0.377 0.325 (0.323)
FDLP 39 128 0.399 0.387 (0.358)

Table 2 shows the MTWV using 128 dimensional Gaussian pos-
teriorgrams of 39 dimensional MFCC and FDLP. The search is per-
formed using NS-DTW as described in Section 3. From Table 2,
it can be seen that Gaussian posteriorgrams of FDLP performs bet-
ter than that of MFCC. Hence, we are motivated to use FDLP as
the acoustic features for QbE-STD. A more detailed analysis of the
performance of NS-DTW using FDLP is described in [8].

To obtain Gaussian posteriorgrams of the acoustic parameters
such as FDLP, no class information such as phone or articulatory
classes is used. In this paper, we derive bottle-neck (BN) features
from an articulatory model (also referred to as articulatory BN fea-
tures). We show that the Gaussian posteriorgrams of articulatory
BN features in tandem with FDLP perform better than that of FDLP.
Section 5 describes the use of articulatory BN features in detail.

5. ARTICULATORY BOTTLE-NECK FEATURES

Availability of labelled data is an issue for building supervised mod-
els such as multi-layer perceptron (MLP). To overcome such an issue
we train models on a high resource language and use it in a low re-
source scenario.

Table 3: Articulatory classes of speech sounds

Articulatory Property Classes # bits
Voicing ±voicing 1

Vowel length short, long, diphthong 3
Vowel height high, mid, low 3

Vowel frontness front, central, back 3
Lip rounding ±rounding 1

Manner of stop, fricative, affricative 5
articulation nasal, approximant

Place of velar, alveolar, palatal, 5
articulation labial, dental
Aspiration ±aspiration 1

Silence ±silence 1

We train an articulatory MLP using 24 hours of labelled Telugu
database consisting of 49 phones [30]. These 49 phones are repre-
sented by 23 articulatory classes which characterize the speech pro-
duction process such as vowel properties, place of articulation, man-
ner of articulation, etc. We modify the articulatory classes described
in [31] to suit the training data available. We use nine different artic-
ulatory properties (as shown in Table 3). Each articulatory property
is further divided into sub classes resulting in a 23 dimensional ar-
ticulatory posteriorgram.

The architecture used for training an articulatory MLP is 39L
120N 13L 120N 23S. For comparison we also train a phone MLP
with an architecture 39L 120N 13L 120N 49S. The integer values in
the MLP architecture indicate the number of nodes, and L (linear),
N (non-linear) and S (sigmoid) represent the activation functions in
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Fig. 1: A general block diagram for computing Gaussian posteriorgrams of bottle-neck features in tandem with the acoustic parameters such
as FDLP.

each of the layers. We use 39 dimensional acoustic parameters as
the input for the articulatory and phone MLPs.

Table 4 shows MTWV obtained using 23 dimensional articula-
tory, 49 dimensional phone and 128 dimensional Gaussian posterior-
grams. From Table 4, it can be seen that the Gaussian posteriorgrams
perform better than the articulatory and phone posteriorgrams. Thus,
phone and articulatory posteriorgrams under-perform when the lan-
guage they were trained on differs from the target language [7, 32].

Table 4: MTWV obtained using 23 dimensional articulatory, 49 di-
mensional phone and 128 dimensional Gaussian posteriorgrams of
FDLP. The values indicated in the brackets show the ATWV com-
puted for the eval dataset.

Posteriorgrams Post. MTWV (ATWV)
dim. dev eval

Art. Post. 23 0.212 0.172 (0.156)
Phone Post. 49 0.265 0.217 (0.209)

Gaussian Post. 128 0.399 0.387 (0.358)

5.1. Bottle-neck (BN) features

In order to exploit the class information captured by an MLP, we de-
rive features from the bottle-neck layer (as shown in Fig. 1). These
are referred to as bottle-neck (BN) features and are of 13 dimen-
sions. The advantages of BN features are as follows [33]: (a) They
are compressed features and are of lower dimension, and (b) Classi-
fication properties of the target class is reflected in the BN features.

5.2. Compressed (CP) features

An alternative representation to BN features can be obtained by post
processing the articulatory posteriorgrams as follows: (a) A nega-
tive logarithm is applied on the articulatory posteriorgrams to scale
the dynamic range and then followed by dimensionality reduction
[14,16]. These post processed posteriorgram features are referred to
as compressed posteriorgram (CP) features, and (b) We then obtain
Gaussian posteriorgrams of CP features in tandem with FDLP.

In the literature, CP features are referred to as tandem connec-
tionist features [34] or probabilistic features [20, 33]. In [9], Gaus-
sian posteriorgrams of CP features derived from phone MLPs were
used for QbE-STD. However, it was shown that the Gaussian pos-
teriorgrams of CP features were performing similar to that of the
acoustic parameters. In this paper, we show that the search perfor-
mance can be improved by using BN (or CP) features in tandem with
the acoustic parameters such as FDLP.

To compress the log posteriorgram features, we perform a non-
linear PCA using an auto associative neural network (AANN) with

an architecture 23L 100N 13L 100N 23L. Thus we obtain 13 dimen-
sional CP features from 23 dimensional articulatory posteriorgrams.
These features are similar to that of the BN features as described in
Section 5.1. However, an advantage of BN over CP features is that
they do not require an explicit dimensionality reduction.

5.3. Comparison of BN and CP features

Table 5 shows MTWV obtained using Gaussian posteriorgrams of
articulatory CP (AR-CP), articulatory BN (AR-BN), FDLP, FDLP +
AR-CP and FDLP + AR-BN. From Table 5, it can be seen that: (a)
Gaussian posteriorgrams of FDLP + AR-BN (or AR-CP) perform
better than that of FDLP, and (b) Gaussian posteriorgrams of FDLP
+ AR-BN perform better than of FDLP + AR-CP. Thus we choose
articulatory BN features to obtain Gaussian posteriorgrams for QbE-
STD.

Table 5: MTWV obtained using Gaussian posteriorgrams of AR-CP,
AR-BN, FDLP, FDLP + AR-CP and FDLP + AR-BN features. The
values indicated in the brackets show the ATWV computed for the
eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

AR-CP 13 128 0.336 0.331 (0.323)
AR-BN 13 128 0.419 0.390 (0.389)
FDLP 39 128 0.399 0.387 (0.358)

FDLP + AR-CP 52 128 0.465 0.467 (0.463)
FDLP + AR-BN 52 128 0.494 0.492 (0.467)

5.4. Selecting an Optimum Dimension for Articulatory BN Fea-
tures

In this Section, we perform experiments to select an optimum dimen-
sion for AR-BN features. We derive AR-BN features of dimensions
5, 9, 13, 17 and 21 to obtain Gaussian posteriorgrams.

Fig. 2 shows MTWV obtained for dev data using Gaussian pos-
teriorgrams of FDLP + AR-BN. We derive 5, 9, 13, 17 and 21 dimen-
sional AR-BN features and use them in tandem with 39 dimensional
FDLP parameters. MLP architecture used to derive AR-BN features
is as follows: 23L 100N ΦL 100N 23L, where Φ = 5, 9, 13, 17, 21.
From Fig. 2, it can be seen that the best performance is with 13 di-
mensional AR-BN features in tandem with FDLP. Thus, we choose
13 as the optimum AR-BN feature dimension.

5.5. Comparison with Phone BN Features

In this Section, we derive 13 dimensional phone BN features and
compare it with articulatory BN features. The MLP architecture
used to derive phone BN features is 39L 120N 13L 120N 49S. Table
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Fig. 2: MTWV obtained for dev data using Gaussian posteriorgrams
of FDLP + AR-BN. AR-BN features of 5, 7, 13, 17 and 21 dimen-
sions are used in tandem with 39 dimensional FDLP.

6 shows MTWV obtained using Gaussian posteriorgrams of phone
and articulatory BN features in tandem with FDLP. The phone and
articulatory BN features are denoted as PH-BN and AR-BN respec-
tively.

Table 6: MTWV obtained using Gaussian posteriorgrams of FDLP
+ PH-BN and FDLP + AR-BN features. The values indicated in the
brackets show the ATWV computed for the eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

FDLP + PH-BN 52 128 0.469 0.452 (0.425)
FDLP + AR-BN 52 128 0.494 0.492 (0.467)

From Table 6, it can be seen that the Gaussian posteriorgrams
of FDLP + AR-BN perform better than that of FDLP + PH-BN. Ar-
ticulatory classes are more language universal than phones. Thus
AR-BN features are a better representation than PH-BN features to
obtain Gaussian posteriorgrams.

6. USE OF LOW AMOUNTS OF TRAINING DATA FOR
ARTICULATORY AND PHONE MLPS

In Section 5, we use an articulatory and phone MLPs trained on 24
hours of spoken audio data. However, access to such large amounts
of labelled data is expensive and not always feasible. In this Section,
we derive BN features from articulatory and phone MLPs trained on
low amounts of spoken audio data.

Fig. 3 shows MTWV obtained for dev data using Gaussian pos-
teriorgrams of FDLP, FDLP + PH-BN and FDLP + AR-BN. The
articulatory and phone MLPs are trained using 10, 20, 30, 50 and 75
mins of audio data. MTWV obtained using Gaussian posteriorgrams
of FDLP is the baseline performance and is denoted as an horizon-
tal line (as shown in Fig. 3). From Fig. 3, we observe that 20-30
mins of training data can be used to derive AR-BN features. This
is because each phone is represented by more than one articulatory
class. This leads to a large amount of training material for each ar-
ticulatory class, which often exceeds the amount of phone training
data [11, 35].

Table 7 shows MTWV obtained using Gaussian posteriorgrams
of FDLP, FDLP + PH-BN and FDLP + AR-BN. PH-BN and AR-
BN features are derived from MLPs trained on 30 mins of labelled
data. From Table 7, it can be seen that 30 mins can be used to derive
AR-BN features to obtain Gaussian posteriorgrams. However, there
is a trade-off between the performance of the BN features and the
amount of data used for training (as shown in Fig. 3)

10 20 30 40 50 60 70
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0.44

0.47
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Fig. 3: MTWV obtained for dev data using Gaussian posteriorgrams
of FDLP, FDLP + PH-BN and FDLP + AR-BN. The x-axis represent
the amount of labelled data used to train the MLPs.

Table 7: MTWV obtained using Gaussian posteriorgrams of FDLP,
FDLP + PH-BN and FDLP + AR-BN. The BN features are obtained
from 30 mins of training data. The values indicated in the brackets
show the ATWV computed for the eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

FDLP 39 128 0.399 0.387 (0.358)
FDLP + PH-BN 52 128 0.387 0.391 (0.338)
FDLP + AR-BN 52 128 0.455 0.442 (0.425)

7. CONCLUSIONS

In this paper, we have used articulatory information and its deriva-
tives such as bottle-neck (BN) features (also referred to as artic-
ulatory BN features) for query-by-example spoken term detection
(QbE-STD). We compared the search performance using Gaussian
posteriorgrams of articulatory BN (AR-BN) and phone BN (PH-BN)
features and have shown that AR-BN features are a better represen-
tation. We have also provided experimental results to show that 30
mins of training data could be used to derive AR-BN features.
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lad, I. Szöke, and J. Tejedor, “The spoken web search task at
MediaEval 2011,” in Proc. of ICASSP, 2012, pp. 5165–5168.
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