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ABSTRACT
Language content in videos from speech and overlaid or in-
scene video text can provide high precision signals for video
event detection and retrieval. However, sporadic occurrence,
content that is unrelated to the events of interest, and high
error rates of current speech and text recognition systems
on consumer domain video make it difficult to exploit these
channels. In this paper, we study different representations of
language content to address these challenges. First, we utilize
likelihood weighted word lattices obtained from a Hidden
Markov Model (HMM) based decoding engine to encode
many alternate hypotheses, rather than relying on noisy sin-
gle best hypotheses. Second, we utilize an event-independent
modified term frequency-inverse document frequency (TF-
IDF) weighting scheme to obtain the final feature vector. We
present detailed experimental results on the TRECVID MED
2013 dataset containing ∼150000 videos, and show that our
representation significantly outperforms alternate representa-
tions for both speech and video text.

Index Terms— multimedia event detection, speech
recognition, video text OCR, lattices, TF-IDF

1. INTRODUCTION

The ability to search through large volumes of digital videos
and summarize their content has important applications.
These include multimedia event detection (MED) to retrieve
videos containing a target event, and event recounting to
produce succinct summaries that are indicative of events con-
tained in the videos. These tasks correlate with the recent
research emphasis on consumer domain videos, e.g., in the
TRECVID evaluations [1]. Compared to similar applications
on video data from professional sources like broadcast news,
consumer video analysis brings extra challenges such as het-
erogeneous topics and genres, varying media quality, and less
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structured photography and editing. Most systems perform-
ing these tasks leverage multiple sub-systems operating on
various modalities [2, 3, 4, 5, 6].

Language content analysis, such as automatic speech
recognition (ASR) and video text recognition (OCR), pro-
vides important information in consumer video analysis for
multiple reasons. First, sub-systems targeting language con-
tent can leverage strong prior information to offset the chal-
lenge of noisy data. For example, word n-gram statistics
constrain predicted word sequences to be those more likely
for a given language. Second, language content analysis
generalizes better than low-level analysis [7, 8], enabling ef-
fective adaption of off-the-shelf models trained using external
data in related but different domains. For example, we can
apply systems trained on broadcast news or scanned docu-
ment data on the consumer video domain. Third, ASR and
OCR bring significant value particularly for semantic analysis
of video, lending concise yet highly informative content for
both downstream machine learning and human interpretation.

Spoken content analysis in consumer video presents many
challenges. Consumer videos are highly heterogeneous due
to variability in content, style, production qualities and lan-
guage. Speech can be spontaneous, conversational and lack
of inherent structure. Background noise and speech from
multiple background speakers often overlay on the acoustic
signal of the target speaker in consumer videos. Due to the
large volume of such heterogeneous data, techniques relying
on manually labeled data are also impractical. Last but not
the least, a viable approach must be scalable and able to han-
dle a large, or varying, set of target events in a huge archive,
requiring minimum human intervention. Video text imposes
similar challenges in this domain.

Given these challenges, language content analysis in con-
sumer videos faces inevitable errors from even state-of-the-art
ASR and OCR systems. This has been a typical challenge for
spoken language processing systems [9]. Recognized words
contain errors, and even correctly recognized words are not
equally indicative of target multimedia events.

In this paper, we describe our system for language con-
tent analysis in consumer domain videos. On the audio chan-
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nel, we first perform speech activity detection (SAD) to iden-
tify likely speech segments. On the visual channel, we ap-
ply video text detection to identify the bounding boxes of
text lines. Both ASR and OCR are performed using Hid-
den Markov Model (HMM) based systems with multi-pass
decoding, mainly trained on non-consumer video data. Both
systems provide hypothesized language content in the form of
likelihood weighted word lattices, encoding a rich yet com-
pact summary of many alternative hypotheses.

We study various noise-robust vector representations
based on these word lattices, enabling effective kernel sup-
port vector machine (SVM) classification. In particular, word
counts are weighted with lattice arc posteriors. Different
weighting and normalization methods are compared, includ-
ing our novel modified TF-IDF based encoding, to determine
the optimal setup. These vector representations are general
enough to support the detection of many different high-level
events without the need for event specific vocabularies. We
present large scale experimental results on the TRECVID
MED dataset [1], showing the superior performance of our
representation for both ASR and OCR.

2. RELATED WORK

Many MED systems leverage both low-level and semantic
components operating on audio and visual modalities [3, 4,
5, 6]. Existing works discuss ways of leveraging noisy lan-
guage content in multimedia data mostly focus on ASR out-
put [10, 11]. More word weighting schemes have been ex-
plored for text categorization and ranking [12, 13]. This pa-
per studies both speech and video text content in consumer
video, both encoded in the form of word lattices. By us-
ing two state-of-the-art HMM-based ASR and OCR systems,
we demonstrate the correlation between effective methods ap-
plied to both sources of language content.

Weighting or pruning words using weights such as TF-
IDF [14, 9] are common practices in natural language pro-
cessing. However, recent literature [11] as well as our pre-
vious experiments find it non-trivial to improve performance
using such common practices for the task of high-level event
detection using error-prune ASR and OCR outputs. For ex-
ample [11] shows that simply using the original ASR vocab-
ulary with the logarithm of the expected word counts out-
performs many different combinations of vocabulary pruning
and weighting. Our previous work uses a modified TF-IDF,
involving word frequencies in each event, to identify infor-
mative words [10]. However, the TRECVID 2013 MED task
requires detecting events unknown at indexing time, therefore
event-independent representations.

We demonstrate a unique word vector representation, con-
structed using statistics based on modified TF and IDF with
no need for event definitions or positive samples. The pro-
posed representation consistently improves high-level event
detection performances for both ASR and OCR.

3. SPEECH PROCESSING

We use GMM-based speech activity detection (SAD) and
HMM-based multi-pass large vocabulary automatic speech
recognition (ASR) to obtain speech content in the video, and
encode the hypotheses in the form of word lattices.

The SAD and ASR models, as well as their training and
offline adaptation data, are described in more details in [10].
We provide the performances on the consumer video data
for reference: SAD obtains a false alarm rate of 10.1% and
missed detection of 5.8% according to the NIST md-eval met-
ric, with a 0.25 second collar. The WER of the baseline ASR
system is 48.2%, and the WER of the ASR system with of-
fline adapted language model and dictionary is 35.8%. The
system outputs not only the 1-best transcripts but also word
lattices with acoustic and language model scores.

4. VIDEO TEXT PROCESSING

We use an HMM-based multi-pass large vocabulary OCR on
text regions provided by a video text detector. Similar to the
ASR, word lattices are used to encode alternative hypotheses.
We leverage a statistically trained video text detector based on
SVM to estimate bounding boxes. This detector is developed
based on [15] with improved front-end processing based on
Maximally Stable Extremal Regions (MSER).

On a small consumer video dataset with annotated video
text bounding boxes, the detector achieves pixel-level preci-
sion and recall of 67.9% and 31.8% respectively. Note that
these measurements are calculated on the raw pixel level, as
our HMM-based OCR system expects tight bounding boxes
around video text regions. The BBN HMM-based OCR sys-
tems is detailed in [16]. The video text content exists in
various forms, such as subtitles, markup titles, and in-scene
text (e.g., banners and road signs), and is therefore much
more challenging than conventional scanned document OCR.
Since we focus on bag-of-words representation for OCR in
this work, we measure the word precision and recall within
each video, at 37% recall and 14.7% precision.

5. LEVERAGING NOISY OUTPUT

5.1. Posteriors from word lattices

Given that the ASR and OCR systems above are processing
very noisy data, the performance of 1-best transcripts is not
satisfactory as shown in subsections 3 and 4. Further, among
the words in the 1-best output, some may be of very low con-
fidence. To alleviate the negative impact on event detection,
we use word lattices or confusion networks [17] instead of
the 1-best transcripts. This has been widely used for keyword
spotting [18]. Compared to the 1-best transcripts, a lattice
contains more alternatives and is more likely to recover im-
portant keywords missed by errors in the 1-best transcripts.
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Words in the different arcs of the lattice Lv from video
v have different confidences. We score word w using the
arc posterior probabilities {pa(w) |a ∈ Lv} derived via the
forward-backward algorithm [19]. Aggregated posterior
probabilities of a word can serve as the expected count,

C(w) =
∑
a∈Lv

pa(w). (1)

One can collect the expected counts from the lattices and
create a word histogram to represent the audio data [18]. To
avoid the noise created by words with very low posterior
probability, we can use a threshold to remove word arcs with
posterior probability lower than a threshold.

A histogram can also be constructed using only the 1-best
in a similar fashion where every word in the 1-best is counted
as one occurrence. We previously established the significant
benefit of using expected word counts computed from lattice
arc posteriors [10]. Therefore, we adopt this method, instead
of using 1-best outputs, for experiments in this paper.

5.2. Effective representations with discriminative weights

In the interest of storage and processing efficiency as well as
ability to generalize to diverse events in large video collec-
tions, we build a representation that is event independent. We
start with a simple histogram representation built on the full
lattice vocabulary after removing stopwords, which we denote
W . This representation,

hv = {C(w) |w ∈W} , (2)

is simply a histogram, i.e. the expected counts C(w) for each
wordw for video v. The vector hv is `1 normalized to produce
a normalized histogram ĥv .

Since the lattice vocabulary is quite large and inclusive,
we reduce the size of the representation by removing both ex-
tremely rare words in the vocabulary which are too infrequent
to be robustly processed by machine learning techniques, as
well as common words which are not useful in distinguishing
videos of different events. Removing these extrema also help
to offset noise from falsely detected speech and video text
content. To this end, we compute the posterior-weighted doc-
ument frequency df(w) of each word w ∈ W over a sample
collection of videos V as

df(w) =
∑
v∈V

min (1, C(w)). (3)

We then remove the 200 most common words as ranked by
df , producing an upper cutoff df . We also set a lower cutoff
df by removing words with frequencies less than 0.001 times
df . These two cutoffs produce the compact vocabulary

W ′ =
{
w
∣∣w ∈W, df < df(w) < df

}
. (4)

In our experiments, these cutoffs remove approximately 1/3
of the words in W for both ASR and OCR.

Using the shortened vocabulary W ′, we have

fv = {C(w) |w ∈W ′} . (5)

Rather than `1 normalizing fv , we normalize by the `1 of hv ,
i.e., by the sum of posteriors of all words in the lattice of the
given video, to produce f̃v . This way, we encode in the nor-
malization term information about the total amount of hypoth-
esized language content in video v, to discount the potential
false alarm in video text detection and speech detection.

We can further encode information about the potential
classification power of each word in our vocabulary W ′ by
weighting them by a revised inverse document frequency,

idf(w) = log
(
df/df(w)

)
. (6)

We then define

gv = {C(w)× idf(w) |w ∈W ′} . (7)

We produce two representations by two different normaliza-
tion schemes for gv: first, with a simple `1 normalization to
produce an idf-weighted histogram ĝv , and second, with the
`1 norm of hv , as we did with f̃v , to produce g̃v .

All the above computation can be performed on the fly
for each single video with precomputed df and idf statistics
on some sample videos. Our unique method of filtering and
weighting the vocabulary by leveraging the lattice informa-
tion from decoding, as well as incorporating video-specific
information about the amount of hypothesized language con-
tent in the normalization, differentiate our representation from
those weighting methods explored but shown ineffective in
[11] for the same high-level event detection task.

6. MULTIMEDIA EVENT DETECTION
EXPERIMENTS

6.1. MED setup

We test our approach on the TRECVID 2013 MED dataset
[1], which is a large collection of ∼150000 consumer web
videos containing 20 diverse high-level multimedia events.
The dataset contains two prespecified training conditions for
the events of interest: EK100, for which 100 positive exem-
plars of each event are provided along with a fixed set of
∼5000 background videos; and EK10, where only 10 posi-
tive exemplars are provided with the same background col-
lection. We carry out multimedia event detection experiments
using either audio (ASR) or visual (OCR) language informa-
tion, and report results on the designated MEDTest set con-
taining ∼25000 videos (including between 16 and 234 posi-
tive instances for each event). We use the provided Research
set, which contains ∼12000 background videos and no ex-
emplars of the events of interest, to compute the df and idf
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Modality Representation EK100 (MAP) EK10 (MAP)

ASR ĥv 11.01% 3.93%
ASR f̃v 12.04% 6.68%
ASR ĝv 10.28% 3.70%
ASR g̃v 12.38% 6.00%

OCR ĥv 6.47% 2.16%
OCR f̃v 8.26% 2.81%
OCR ĝv 6.75% 2.18%
OCR g̃v 7.84% 3.25%

Table 1. SVM-based event detection performance using dif-
ferent word vector representations on the MEDTest set.

statistics for our representation. All word processing is case-
insensitive.

An SVM classifier [20] is trained for each event, us-
ing only the provided training collections. SVM hyper-
parameters for misclassification cost and kernel width are es-
timated through extensive cross-validation grid search within
the training set, for each representation and each event sepa-
rately. Performance is measured on the MEDTest set by mean
average precision (MAP) across the 20 events. In preliminary
experiments, we found that the χ2 kernel produces the most
competitive results compared to linear and RBF kernels, and
therefore use it in all experiments below.

6.2. Experimental results

For ASR and OCR, we perform the MED task using represen-
tations ĥv , f̃v , ĝv , and g̃v presented in Section 5.2. From Ta-
ble 1, we observe that f̃ and g̃ significantly outperform ĥ and
ĝ in both EK100 and EK10 conditions. We believe that f̃ ef-
fectively leverages the aggregated posteriors of the larger vo-
cabulary in representing total video language content, while
reducing noisy decoding errors and redundant common words
through the restricted vocabulary W ′. Further, g̃ in some in-
stances demonstrates the additional benefit of incorporating
the idf(w) term that additionally weights words by their rel-
ative frequencies on the research set. Note that ĝ does not
perform as well as either f̃ or g̃, indicating the importance of
using the full speech content in computing the normalization
term when reducing vocabulary size.

6.3. TRECVID results

Independent evaluations were conducted by NIST as part of
the TRECVID 2013 evaluations on a blind ∼100000 video
dataset, both for the same 20 events as in Section 6.2 (pre-
specified), as well as for 10 new events given one week before
the evaluation (ad hoc). Figure 1 summarizes our system per-
formance compared to all other participating teams for which
NIST released ASR and OCR results. Our ASR and OCR
systems, based on the g̃ representation, achieved highly com-
petitive scores across both EK100 and EK10 training condi-

Fig. 1. TRECVID 2013 evaluation results for our ASR and
OCR systems against all other ASR/OCR submissions.

tions as well as prespecified and ad hoc events. In all con-
ditions, our system is within the top two performing submis-
sions. Note that our representation generalizes well to the ad
hoc events with no vocabulary modification.

7. CONCLUSION
To leverage speech and video text recognition in consumer
video, we explore different representations of language con-
tent which are robust to noisy recognition output and are com-
pact and effective for detection of diverse events. We utilize
the likelihood weighted word lattices obtained from a Hid-
den Markov Model (HMM) based decoding engine to effi-
ciently encode many alternate hypotheses, rather than relying
on noisy single best hypotheses. We additionally leverage the
information encoded in the lattices to generate a novel event-
independent modified TF-IDF weighting using a two-tiered
vocabulary to produce a compact and robust representation.
We present detailed experimental results on the TRECVID
MED 2013 dataset and show that despite previous works [11]
indicating otherwise, our carefully constructed normalization
and weighting scheme outperforms alternate representations
for both speech and video text. Our results from the official
TRECVID 2013 evaluation show that our representation gen-
eralizes well to unseen events of interest.
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