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ABSTRACT

In this paper we describe progress we have made in detecting out-of-
vocabulary words (OOVs) for a speech-to-speech translation system
for the purpose of playing back audio to the user for clarification
and correction. Our OOV detector follows a strategy of first iden-
tifying a rough location of the OOV and then merging adjacent de-
coded words to cover the true OOV word. We show the advantage
of our OOV detection strategy and report on improvements using a
real-time implementation of a new Convolutional Neural Network
acoustic model. We discuss why commonly used metrics for OOV
detection do not meet our needs and explore an overlap metric as
well as a Jaccard metric for evaluating our ability to detect the OOVs
and localize them accurately in time. We have found different met-
rics to be useful at different stages of development.

Index Terms— OOV, metric, speech-to-speech translation sys-
tem

1. INTRODUCTION

Using speech-to-speech translation systems, two speakers of differ-
ent languages can use a computer to try and communicate with each
other. Such systems typically include component technologies such
as automatic speech recognition (ASR), machine translation (MT),
and text-to-speech (TTS). More recently there is new interest in in-
corporating an intelligent agent or dialogue manager to detect errors
or ambiguity, e.g. ASR errors, homonyms, word sense, etc., and
engage in a dialogue with the user to correct the errors [1, 2, 3, 4, 5].

An important type of ASR error concerns out-of-vocabulary
(OOV) words, which are often content words that are important to
the conversation. One possible strategy is to detect the ASR errors
and ask the user to correct them using a clarification dialogue such
as a “Paraphrase or Spell” module. Once the errors are resolved, the
utterance is translated and the resulting utterance is synthesized in
the target language. The “Paraphrase or Spell” module may prompt
the user with something like “I did not understand 〈audio corre-

sponding to OOV word〉.” It is important that the OOVs be detected
as precisely as possible, i.e. with accurate time boundaries. If the
audio playback includes words that are already correctly decoded by
the ASR, it represents wasted effort to ask the user for correction.
On the other hand, if the audio did not cover enough of the OOV
word to be intelligible, the user will become confused and cannot
correct the error. The act of asking for clarification is already likely
to negatively impact the user’s perception of the system quality [6],
so we must proceed in such a way as to make this negativity have as
little impact as possible.

This paper is concerned with pinpointing OOV words uttered
during free dialogue with a speech-to-speech translation system in
both source and target languages. Previous work in the area has of-
ten focused on detecting OOVs loosely, in the sense that a small
overlap in time between the hypothesized and reference region of an
OOV counts as a successfully detected OOV. In certain situations,

however, such as a dialogue system with confirmation or error cor-
rection, especially when playing back audio snippets to the user, ac-
curate boundary information is key because the ability to clearly in-
dicate which portion of the user’s original utterance is failing, rather
than asking for a paraphrase of the entire utterance, is important for
users to successfully make progress [3]. In light of that observation,
we explore various metrics for evaluating our OOV detection frame-
work and discuss the strengths and weaknesses of each.

In this paper, we report progress we have made in the OOV de-
tection component of a two-way speech-to-speech translation system
between English and Iraqi Arabic which we have built for the Phase
2 DARPA BOLT-BC Evaluation. In Section 2, we describe our OOV
detector which follows a strategy of first identifying a rough location
of the OOV and then merging adjacent decoded words to cover the
true OOV word. Section 3 describes why commonly used metrics
for OOV detection do not meet our needs and explores a few metrics
for evaluating our system. We report in Section 4 a real-time im-
plementation of an acoustic model based on Convolutional Neural
Networks (CNN), which results in improved OOV detection. Sec-
tion 5 briefly relates to prior work, and we finish with discussion and
conclusions in Section 6.

2. OOV DETECTOR

Our OOV detector is based on a maximum entropy (maxent) classi-
fier similar to that described in [7, 8]. The speech recognizer uses
a hybrid language model that contains a vocabulary of both word
and sub-word (fragment) units. The fragment units are variable
length phone sequences that are intended to be filler models to ab-
sorb OOV words, especially when they are acoustically different
from in-vocabulary words. They can be selected automatically using
statistical methods [9].

The recognizer decodes a speech utterance to produce a confu-
sion network structure [10] that compactly encodes the likely hy-
potheses and their posterior probabilities. An example is shown in
Figure 1. Each confusion bin contains a set of competing hypotheses
with their posterior probabilities (not shown.) The basic idea behind
our OOV detector is that an OOV word does not match well with in-
vocabulary words and is more likely to activate fragment hypotheses
(e.g. IX I IY in the figure); in addition, there is likely to be more
confusion in the bin, and the best hypothesis is likely to have lower
posterior probability.

Following these intuitions, the following features can be ex-
tracted from each bin of the confusion network and used in a maxent
model to detect OOVs:

Fragment Posterior = ∑
f∈t j

p( f |t j), (1)

where f are the fragments in the current confusion bin t j ,

Entropy = − ∑
w∈t j

p(w|t j) log p(w|t j), (2)
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Fig. 1. Confusion network example.

where w is any word or fragment in the bin, and

Posterior = max
w∈t j

p(w|t j), (3)

which is the posterior of the best hypothesis in the bin.

The time boundaries (start and end times) of each bin are ex-
pected times computed by weighting the times of the alternatives by
the word posterior probabilities. Given time boundaries, another fea-
ture we can use is the duration of the bin. We do not use w, the iden-
tity of the word corresponding to the best hypothesis in the bin due to
data sparseness, but we use the word frequency rank as a feature. All
features were quantized using uniform-occupancy partitioning [11],
and we used about ten partitions for most features. Features asso-
ciated with neighboring words can also be used as context features.
Empirically we found left context features to be useful.

We use a maxent classifier with three categories: OOV, in-
vocabulary error (WErr), and in-vocabulary correctly decoded word
(WCorr). To train the classifier, we use a development set contain-
ing OOV instances. The audio is decoded to produce confusion
networks and also force aligned with reference transcripts. Each de-
coded word is labeled OOV, WErr, or WCorr based on the reference
aligned word that overlaps the most with it.

The maxent classifier assigns category probabilities to each de-
coded word. However, our goal is to find the true OOV word and its
time boundaries; often the true OOV word encompasses more than
one decoded word. Our strategy is to find the decoded word that is
most likely to be part of an OOV and to grow a region around that
word. The merging is based on the category probabilities coming
out of the maxent classifier and the durations of the word hypothe-
ses. The merging algorithm strives to join contiguous words with
high likelihood of representing OOV tokens into a single region, and
agglomeratively joins additional neighbors, raising the threshold for
merging as the duration of the merged segments increases. If desired,
after the top hypothesized region has been found, we can iterate to
find the next OOV word by considering the next most likely decoded
word that does not overlap with previous region(s).

The OOV detector was trained on a relatively small development
set of 575 sentences containing about 4500 words, with about 380
OOV words. The test set includes 493 sentences containing OOVs
provided by SRI and 1138 sentences extracted from the BOLT test
set which do not contain any OOVs. In total, the test set has about
19K words, with 501 OOV words.

3. METRICS

Recall that we need to cut out the audio containing the true OOV
word in order to play back to the user to seek clarification/correction.
The metrics commonly used to evaluate OOV detectors do not match

our needs. In [12], an OOV instance is considered correctly detected
if there is any (even tiny) overlap between the detected region and the
true OOV word. In [7], frame level detection is considered. In [8],
scoring is done at the level of individual decoded words. None of
these metrics fit our needs. For example, detecting half of an OOV
word would lead to a garbled play-back that can confuse the user.
Consider the example in Figure 1. The metric used in [8] would
give credit of 2 (for decoded words “harry” and “ali”); but we really
want to give only a credit of at most 1 (for reference OOV word
“aerially”). If only “ali” had been detected, we want to give it little
or no credit because playing back that segment would confuse the
user.

3.1. Overlap Metric

To address these issues, we define a metric based on the amount
of overlap between the reference OOV word and the hypothesized
OOV region. We will give credit only if the amount of overlap is
95% of the duration of the OOV word. Given a set of sentences sn,
in-vocabulary words wi ∈ Isn , OOV words w j ∈ Qsn , and hypothe-
sized/predicted OOV words hk ∈Hsn , the number of true positives is
then defined to be:

TPoov = ∑
sn

∑
w j∈Qsn

⌈

max
hk∈Hsn

overlap(w j,hk)

len(w j)

⌉

0.95

, (4)

where

⌈x⌉T =

{

1 if x≥ T ;
0 if x < T .

(5)

The number of false positives is defined to be:

FP = ∑
sn

∑
wi∈Isn

⌈

∑
hk

overlap(wi,hk)

len(wi)

⌉

0.95

(6)

In our experiments, we loosened the definition in Equation 6 so
that in-vocabulary words incorrectly recognized by the ASR are not
counted as false positives. wi ∈ Isn is redefined to be in-vocabulary
words that are correctly decoded by the ASR. We do not give any
credit or impose any penalty for detecting a non-OOV ASR error. In
this way, Equation 6 represents truly wasted conversational effort to
clarify/correct words that are already correct.

One shortcoming of Equation 4 is that the system can hypoth-
esize a region much larger than the OOV word and not be penal-
ized, except in Equation 6. We will propose a metric in Section 3.3
that penalizes hypothesized regions that are either too short or too
long. Nevertheless, the 95% overlap metrics make sense for our
task: TPoov measures how many OOVs we are potentially able to
play back to the user and correct, while FP measures wasted effort.

Another metric that we found useful is a 5% overlap metric,
where we replace T = 0.95 in Equations 4 and 6 with T = 0.05.
If we constrain the detector to return at most one word per sentence,
this metric gives us a idea of whether the detector is finding the ap-
proximate locations of the OOVs. This metric helps decouple the
classifier performance from that of the merging algorithm, as we
will see in the next section.

3.2. Using Overlap Metrics

Figure 2 shows the use of overlap metrics. In the first experiment,
we use maxent classifier scores to label zero or more decoded words
as a detected OOV region. A word is labeled OOV only if the OOV
category score wins compared to WErr and WCorr, and if it exceeds
a score threshold. Sweeping the score threshold produces the lowest
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ROC curve, which at 6% FPR (False Positive Rate) has about 40%
OOV recall (true detection rate), using the 95% overlap metric.

We next perform a diagnostic test using the 5% overlap metric.
We ask the maxent classifier to label at most one decoded word as
OOV per sentence, with rejection based on a score threshold. Then
we compute the recall based on 5% overlap, i.e. give credit if the de-
tected word overlaps at least 5% of the true OOV duration. We see
that the OOV recall by this metric peaks at about 80% at very low
FPR (leftmost curve). Intuitively, this means that the maxent classi-
fier is getting the rough location of the OOV, but is not getting the
correct boundaries of the whole word; this motivated us to develop
the strategy of first finding the rough location of the OOV and using
a merging algorithm to grow the region to cover the OOV word. By
doing so, we end up with much better OOV region hypotheses; in
Figure 2, we see that at 6% FPR, we can now achieve an OOV recall
of 78% (compared to 40%), using the 95% overlap metric.
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Fig. 2. Overlap Metrics.

3.3. Soft Counts and Jaccard Metric

Since our requirement is that the detected region covers the OOV
word without being too long or too short, the Jaccard index [13] can
be used to provide soft counts to the metric. The number of true
positives is defined to be:

TPoov = ∑
sn

∑
w j∈Qsn

max
hk∈Hsn

overlap(w j,hk)

union(w j,hk)
, (7)

where TPoov includes the Jaccard index. The sum is over all the true
OOV instances. For each OOV instance, the Jaccard index gives a
credit between 0 and 1: 0 if there is no overlap and 1 if there is exact
overlap. If the hypothesized region grows larger than the maximum
overlap, there is a penalty in the denominator, leading to a smaller
value for the metric.

Also in the formula, we see that for each true OOV word, we
allow only one of the hypothesized OOV words to contribute to the
metric. If there are multiple OOV words covering the true OOV
word, only the best matching one will count. We do not want mul-
tiple OOV hypothesized words to get the same credit as a single
correct hypothesis, because each hypothesized word is intended to
be played back separately.

The OOV detection rate according to the 95% overlap metric
is insensitive to excessive length in the hypothesized OOV regions,
and the Jaccard metric is more suitable for tuning parameters used
in the OOV merging algorithm. The algorithm uses thresholds for
“low,” “medium,” and “high” confidence levels. As we increase
these thresholds, the OOV detection rate based on the 95% over-
lap metric continues to increase, resulting in very long sections of
the sentence labeled as “OOV.” The only indication of the decreas-
ing quality of the hypotheses is that the false positive rate increases
for the ROC curve. In contrast, the OOV detection rate based on the
Jaccard metric allows us to tune the merging parameters, as shown in
Figure 3, which indicates that threshold setting of (0.2,0.5,0.9) out-
performs other values of the thresholds, including very low values
(0.05,0.07, 0.1) and very high values (0.86,0.973,0.9788).

Because our end goal is to produce an interactive system where
audio snippets are played back to the user, a desirable property of
a metric is that it correlates well with human judgment about the
system’s ability to isolate keywords in the audio stream. To mea-
sure that correlation, we devised a listening test in which subjects
were shown the text corresponding to a keyword and then played an
audio snippet excising that keyword according to the automatically
determined endpoints. Eight users were asked to rate the quality of
the segmentation on a six point scale for each of ten keywords. The
users’ ratings were then correlated with the Jaccard metric as well as
the 95% overlap metric. The Jaccard metric resulted in a correlation
of 0.21 versus 0.09 for the 95% overlap metric.
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Fig. 3. Using Jaccard metric to tune “Low,” “Medium,” and “High”
confidence threshold parameters of merging algorithm.

4. CNN ACOUSTIC MODELS

Our baseline acoustic models for speech-to-speech translation are
regular speaker independent GMMs, trained with feature and model
space discriminative training. The English model was trained on
more than 200h of data from the DARPA Transtac speech-to-speech
translation program. Like others [14], we have seen significant im-
provements switching to Neural Nets for various transcription tasks.
However, the challenge for speech-to-speech translation compared
with other transcription tasks is that the engine needs to run with
low latency, limiting how much temporal context can be used. The
low latency requirement makes it necessary to have only one decod-
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ing pass without a second, speaker adaptive, pass. This makes it ap-
pealing to use Convolutional Neural Networks [15, 16] (CNNs), de-
signed to achieve shift invariance in the feature domain as it was pro-
posed in [17]. The advantage of this model is the capability of fea-
ture normalization through weight sharing and frequency shift, and
it is therefore well suited for speaker independent decoding passes.

While variance normalization of the features is important for
training Neural Nets, the low latency requirement makes it difficult
for us to have robust variance estimates of the test data. Instead we
opt for a two stage solution. We estimate global mean and variance
statistics on the training data and update only the mean statistics in
decoding which is less sensitive to short utterances.

For English, we reduced the error rate from 14.1% (our best
GMM) to 9.0% for our CNN model. Similar error rate improve-
ments were also observed for Iraqi. It is also worthwhile mentioning
that the decoder speed improved by a factor of 3, partially because of
better model, but also because the Neural Net model can use multiple
cores more effectively.

The CNN also improved OOV detection. Figure 4 shows the
OOV detection performance comparing the new CNN acoustic
model with the GMM model. Just by substituting the CNN model,
the false positive rate was substantially reduced, with a little im-
provement in recall. We also made improvements in the OOV
detector training, including dealing with epsilon bins, posterior
normalization, duration weighted scores, text normalization within
consensus bins, and matched training. The improvements resulted
in further improvement in OOV recall as shown in the figure.
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Fig. 4. OOV detection performance with CNN acoustic model and
improved OOV model.

5. RELATION TO PRIORWORK

Detecting out-of-vocabulary words in a speech transcription system
has been previously explored for various applications, e.g. [18], [19],
[8], and [20]. Most of the approaches can be characterized as either
filler models or confidence-estimation models, or a combination of
the two such as [21, 8]. Our system falls into the “combination”
category, as we include word fragments in the vocabulary [7] and
model features including word posterior probabilities.

In the context of a speech-to-speech translation system, Kumar
et al. [1] focused on identifying OOV named entities using a maxi-

mum entropy model with word posterior, lexical and part-of-speech
features. Our work differs from theirs in that we do not explicitly fo-
cus on named entities but rather model all OOVs, we model a variety
of features in addition to word posterior, and we tune our system us-
ing various metrics tailored to the portion of the system in question.
Some authors such as [5] have focused on grouping several hypothe-
sized words together prior to modeling, for example by using condi-
tional random fields [8]. Our merging algorithm is similar in spirit,
aiming to group individual hypothesized words into a single OOV
region. Our system requires accurate time-boundary information for
out-of-vocabulary items because we engage the user in clarification
dialogue in which audio snippets of the OOV region are played back,
similar to the system described in [2].

Our performance metrics differ from those presented in prior art,
in that we explicitly penalize discrepancies in the time boundaries
between the reference and hypothesized OOVs.

6. DISCUSSION/CONCLUSIONS

In this paper we have looked at detecting out-of-vocabulary words in
the context of a speech-to-speech translation system and measuring
the accuracy of the OOV detection.

We have noted that accurately identifying the OOV word bound-
aries is important for error correction, and that most existing metrics
do not suffice. We prefer to err on the side of including excess speech
rather than losing information; in light of that preference, we have
introduced a 95% overlap criterion for assessing the performance of
our OOV detector. We have also introduced a Jaccard metric which
penalizes discrepancies in the time boundaries of OOV estimates,
whether they be too short or too long. We found that using CNNs
in our ASR engine outperforms GMMs both in terms of word error
rate and OOV detection.

In order to address the question of how accurate are the bound-
aries which we consider to be “truth,” we looked at forced align-
ments using two different Gaussian mixture acoustic models, as well
as a set of alignments using a Convolutional Neural Network model.
We also synthesized an additional alignment by taking the median
of the word start and end times from the set of available alignments.
The recognition hypothesis of an ASR often turns out to be noisy
or erroneous in terms of estimation of actual word boundaries, es-
pecially in the the presence of OOV items in speech [22]. We per-
formed a hand alignment of the OOV words occurring in 20 utter-
ances from our development test set. We found that the average de-
viation from the hand alignments was 0.049 seconds for the median
and 0.054 seconds for the CNN alignment. Because hand-aligning
the entire corpus would be very costly, we decided to use the median
alignment as our reference alignment.

One question which we have not yet answered is “How inac-
curate can boundaries of a hypothesized OOV word be before the
user experience degrades when that OOV is played back to the user
for correction or clarification?” Having an answer to this question
would allow us to set the thresholds for the overlap metrics in a more
principled way.
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