
AN AUTOENCODER WITH BILINGUAL SPARSE FEATURES FOR IMPROVED
STATISTICAL MACHINE TRANSLATION

Bing Zhao , Yik-Cheung Tam, and Jing Zheng

firstname.lastname@sri.com; SRI International, Menlo Park, CA 94025, USA

ABSTRACT

Though sparse features have produced significant gains over tradi-
tional dense features in statistical machine translation, careful fea-
ture selection and feature engineering are necessary to avoid over-
fitting in optimizations. However, many sparse features are highly
overlapping with each other; that is, they cover the same or simi-
lar information of translational equivalence from slightly different
points of view, and eventually overfit easily with only very feature
training samples in given bilingual stochastic context-free grammar
(SCFG) rules. We propose a natural autoencoder that maps all the
discrete and overlapping sparse features for each SCFG rule into a
continuous vector, so that the information encoded in sparse feature
vectors becomes a dense vector that may enjoy more samples during
training and avoid overfitting. Our experiments showed that for a 33-
million bilingual SCFG rules statistical machine translation system,
the autoencoder generalizes much better than sparse features alone
using the same optimization framework.

Index Terms— machine translation, sparse features, SCFG
grammar induction, optimization, autoencoder, PRO

1. INTRODUCTION

Sparse features were designed to fix very specific machine trans-
lation errors and dramatically improve translation quality for these
cases. For instance, a lexical error can be fixed by checking a par-
ticular word-pair and assigning to the error a weighted penalty when
it appears again in the search path. The weight is generally tuned
via MIRA [1] or PRO [2] with sentence-level BLEU score approx-
imations. However, most sparse features are too specific, and the
weights tuned on them tend to remember the whole tuning set: e.g.,
the bigram of the target side of the relative frequencies for bilingual
stochastic context-free grammar (SCFG) rule, the rule ID, which can
be remembered almost exactly for a given tuning set; or the word-
pair, which is heavily biased for the given tuning set. Also, sparse
features tend to be highly overlapping with each other; for instance, a
fertility feature tends to be partially redundant with the lexical word
pairs; a bigram feature has redundancy with unigrams, and so on.
Majority of these features have only very limited samples observed
in optimization, and thus can have very large and unreliable weight
for unseen data. Within a log-linear model, tuning on these over-
lapping features is difficult, and easily gets easily caught in local
optima. Overfitting is a curse of sparse features because the tuning

This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR0011-12-C-
0016. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the DARPA.

set tends to provide too few examples to learn a meaningful weight
to generalize to unseen test sets.

With their overlapping nature, sparse features actually evaluate
the translational equivalence for each SCFG rule. We propose to
shrink the dimension of the millions of sparse features into a rea-
sonably small dimension of dense features so that each dimension
can use more training samples, instead of being too specific to recall
only examples from a given tuning set. An autoencoder with dif-
ferent configurations can automatically shrink the dimensionality of
the overlapping sparse features and hence improve the trainability of
these features. An autoencoder has a strong relationship to principal
component analysis (PCA) if the inner layer of a three-layer net is
linear. With its flexibility for more layers and non-linear hidden lay-
ers, an autoencoder provides much more information and flexibility
than PCA.

The proposed autoencoder simplifies feature engineering for
machine translation by feeding forward the existing highly over-
lapping, discrete features to a neural network, and generating con-
tinuous real-valued dense features. These resulting dense features
can simplify optimization and feature selection, leading to better
operating points as each feature dimension reflects more training
samples. They also help reduce overfitting, and generalize better to
unseen test sets.

In this paper, we treat each sparse feature as an entity and rep-
resent it as a node in a neural network. In Section 2, sparse features
for machine translations are outlined and analyzed. Section 3 de-
scribes an autoencoder for encoding the sparse features and different
training strategies. Section 4 details our experiments using the au-
toencoder. Section 5 presents discussion and conclusions.

2. SPARSE FEATURES FOR MACHINE TRANSLATION

Statistical machine translation decoding employs a log-linear frame-
work for modeling the translational equivalence for translating for-
eign language F into English E as in Eqn. 1

E∗ = arg max
E

P (E|F) ∼ arg max~λ · ~ff(F,E), (1)

where ~ff(F,E) is a vector of rich features defined for a given source
sentence and target sentence pair: F,E. The weights denoted as λ
are learnt from a tuning set, usually consisting of a couple of thou-
sand sentence-pairs. Simple dense features for machine translation
include the IBM Model-1 [3] lexical scores, relative frequencies for
bilingual stochastic context-free grammar (SCFG) rules learnt from
the parallel data, and monolingual language model scores. Opti-
mization methods such as PRO or MIRA can optimize million of
features.

Sparse features are designed to help check the specific evidences
in the SCFG rules in statistical machine translation. These features

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7153

Table 1. Sparse Feature Types and Examples
Feat Categories Information Examples

Lexical if the word-pair is seen in a lexicon f − e
Fertility Source word fertility f − v0, f − v1, f − v2, f − v3+

Rule type Detailed Hiero rule types F-X1-F-X2↔ X1-E-X2

Reorder type If the target side contains monotone or reordering
of non-terminals

WX0WX1W

Target spontaneous words Predefined English spontaneous words the, this, such, was...
Bigrams Bigrams seen in the target side of the phrases BI explosions murders

Frequency of rules Bind frequency if the observed rules freq1, ..., freqK

are usually discrete and most of the time have binary values. They
overlap with other features such as dense features like IBM Model-1
or language model N-grams scores. In Table 1, the lexicon features
are derived from the IBM model-1, in which we check if a word-pair
f ↔ e occurs in the derivation. The fertility features check the num-
ber of times a word is aligned to 1 word, 2 words, or 3+ words. The
reordering features will only check the reordering between nonter-
minals to provide a simple count of the reorderings in the derivation
tree. The rule type is a more detailed description of the SCFG rules
used. 38 types of rules are defined in our system. Several exam-
ples together with the weights are given in Table 2. The larger the
weights for the features, the more preferable by the machine transla-
tion systems. All the weights were learnt from a PRO optimization
framework with linear SVM classifier using a L2 regularizer.

2.1. Discrete valued features

As can be seen, most of the sparse features used in machine trans-
lation are simple binary-valued ones. They do not make use of
the Gaussian distributions found in speech recognition Markov state
emissions, and hence lack the state labels (from a decision tree) re-
quired for merging the class labels back to the encoding scheme.
Furthermore, the properties of the normalizations for the sparse fea-
tures cannot be preserved by a smooth neural network.

2.2. Overlapping nature of the features

The majority of the features overlap with each other. For instance,
the lexical word-pair features were derived directly from IBM
Model-1, an already dense feature in many translation engines.
The rule type and reordering type also overlap because both con-
sider the source side of a rule. The sparse bigrams features also over-
lap with the standard language model, though sparse feature values
are binary. Similar translation equivalences are represented in many
features, suggesting that we can do feature dimensionality reduction
to weave all the evidence together, such that the features of different
dimensions are decoupled and transformed into real values to use
more samples during optimization

3. AUTOENCODER

The goal of an autoencoder is to project an input vector x into a hid-
den representation h , which produces the input vector x̂ = f(x; Λ)
where f(·) is a predictor function parametrized by Λ [4]. For opti-
mization, we use a minimum squared error between the reproduced
vector and the original input vector, subject to a regularization term:

L(X; Λ) =
1

2

N∑
i=1

|xi − f(xi; Λ)|2 +
C

2
|Λ|2 (2)

X

Hk

H1

X̂

Fig. 1. Deep autoencoder architecture.

where C denotes the L2 regularization constant, which is usually
tuned on a development set. The choice for the function predictor
can have a multi-layer neural network architecture as shown in Fig-
ure 1. With this architecture, we can implement different types of
autoencoder, including PCA when linear units are employed in the
hidden layer of a 3-layer neural network. With the recent advances in
deep learning, we use multiple hidden layers with sigmoidal units to
implement the autoencoder. Since it is an autoencoder, linear output
units are employed. Given training examples {xi}, we feed xi into
the input and output layer of the neural network. Standard stochastic
backpropagation is performed via gradient descent on a mini-batch
of training examples.

∂L(X; Λ)

∂Λ
=

M∑
i=1

(xi − f(xi; Λ)) · ∂f(xi; Λ)

∂Λ
+ CΛ (3)

where M denotes the size of the mini-batch. To prevent overfitting,
cross-validation is carried out to ensure that each weight update will
improve the performance on the cross validation set.

A simple autoencoder is a three-layer linear neural network,
with the hidden layer as a linear one, and the same input and out-
put dimensions. A cross validation set is used to check the learning
progress on a sum-squared-error criterion; this check can be consid-
ered simple PCA.

3.1. Encoding sparse features

Previous work has focused on converting words via autoencoder
into real-valued vector representation for ITG (inverse transduction

7154

Table 2. Features and their weights. The positive weights are what MT system likes; negative weights are what system tries to penalize during
decoding. X is a non-terminal, and W is referring to a word. F referring to a word in foreign language, and E a word in English. The order
of X1 and X0 in a rule represents a reordering.

Features Weights Features Weights Features Weights
WX0WX1W 0.0431 F-X-F-X-F→X-E-X-E -0.0301 some -0.0038
WX1WX0W -0.0175 F-X-F-X→ E-X-E-X-E -0.0146 an 0.0087

X0WX1 -0.0346 X-F-X→ X-E-X-E 0.0042 such -0.0514
X1X0W -0.0397 F-X-F-X-F→ X-E-X -0.0086 was 0.0128

grammar) for MT. Here we focused on a new type of autoencoder,
where each note is considered a binary sparse feature (0 or 1), in-
stead of a word as in previous work. The input dimension is in the
range of several millions; as the value is binary, we do not need to
have normalizations as used in typical speech setup.

4. EXPERIMENTS

Our translation engine is built on data from the DARPA Transtac
program, a speech-to-speech translation program targeting tactical
military communication. The source language is Iraqi Arabic, and
target language is conversational English. We have 763K parallel
sentence-pairs as training data and 6984 sentence-pairs for learning
the weights for sparse features. We have one development set of
2862 sentences, and three unseen test sets. The development set has
one reference, and all test sets have 4 references. Details are listed
in Table 3.

Table 3. Features and their weights
Data Sentences Words
Train 763915 4884766
Tune 6985 64188
Dev 2862 29324
Tst1 560 7994
Tst2 579 9895
Tst3 689 8985

In our baseline machine translation engine, we incorporated 12
dense features for each SCFG rule after the Hiero grammar in [5],
including: IBM Model-1 scores in both source-to-target and target-
to-source directions, relative frequencies in both directions, count
of phrases, count of Hiero rules, number of source content aligned
to target spontaneous words, number of target spontaneous words
aligned to source content words, three bined frequencies, and the
number of unaligned source words. For sparse features, we com-
puted the 7 categories of the sparse features as listed in Table 1. In
total, we have 826, 532 sparse features (denoted as 800K hereafter).

We chose PRO training as our optimization framework, and
sampled the pair-wise ranking data points from an n-best list with 5
BLEU points gap. Up to 5000 samples per sentence were drawn in
order to learn a linear SVM classifier, with L2 norm regularizations.
Weights were then interpolated back with the seed weight to form a
new weight vector for the next optimization iteration. For the sparse
feature baseline, as in the second row in Table 4, we also carried
out additional feature selection via cross-validation on tuning data.
Around 2300 features were left with a weight, whose l1 norm is
larger than 1e-3 in our final system as shown in the 2nd row of
Table 4. For the rest of the experimental setup that using dense
features, we simply carried out the PRO optimization directly, with
random restarts in the initializations.

4.1. Speeding up autoencoder

Because the input dimension is very large – in the range of a million
nodes each in the input layer and output layer – the parameter space
is quite large, and learning can be very slow. We decided to divide
the tuning data into mini-batches and randomly sample from these
mini-batch for each epoch. We then monitored the learnt parameters
on a cross-validation set. It seems the neural network training is
also sensitive to the size of the mini-batches, and it is almost task-
specifics in our experiments. We chose a size of 1000 data points for
each mini-batch empirically. This approach speeds up learning and
gives reasonable model output, even though not all the training data
maybe used. The biggest model required about 24 GB in memory,
and about 1 week to process 3 epochs and complete the final model
on a single CPU with a sampling through a total of 33 million data
points where each sample was one bilingual SCFG rule.

4.2. Applying the autoencoder

In our experiments, we configured the autoencoder in several ways
for sparse features. First, we simulated the simple PCA, a three-layer
network, with a linear hidden layer. Second, we simulated the non-
linear component analysis (NLCA) in a 5-layer network with a hid-
den middle layer sandwiched by two non-linear hidden layers. Third,
we varied the configurations for the non-linear hidden layer together
with a selection of hidden nodes for the hidden layer. This con-
figuration seemed to produce the best configurations for improved
translation quality.

After feeding forward the sparse features from each SCFG rule
to get the hidden layers values, we derived the feature representa-
tions through the hidden layer. These derived features from auto
encoder are like the dense features, and are added to the features for
each rule. In our experimental setups, the only different factors are
from the additional derived features appended to the sparse feature
setup (baseline2). Empirically, we found the initialization for opti-
mizations are very hard if we start from all zero weights; rather than
that, we started from an optimized dense feature seed weightings,
and then add sparse features, and then add the derived nnet features
incrementally in PRO optimization framework . A slow learning rate
of 0.0125 was chosen for updates to the inferred dense feature vec-
tor. For instance, we add 50 more dimensions to sparse in n1, and
100 to sparse setup as in n6. This strategy of optimizing features
incrementally seems to work empirically well. Results are shown
in Table 4, in which all the optimizations for autoencoder are based
on the seed from sparse baseline2, which is in turn based on dense
baseline1.

In baseline3, we added the derived dense features from an au-
toencoder directly to the baseline1; without pairing with the sparse
features, this gives worse performances than baseline2. The derived
feature set alone is not representative enough of the full information
in sparse features yet, and need to be paired with original features.

Comparing n1, n2, the PCA setups, to the baseline sparse se-
tups, the differences are not statistically significant. In a way, the

7155

Table 4. Translation experiments using different autoencoder structures. 800K denotes the input/output sparse features; for the hidden layers,
L means linear, and NL non-linear; NLCA stands for non-linear component analysis. PCA for principal component analysis.

network structure dev tst1 tst2 tst3
dense (baseline1) N/A 33.4 49.1 51.1 50.9
sparse (baseline2) N/A 33.9 49.9 52.0 52.4

dense+ (baseline 3) 800Kx50Lx800K 33.9 49.1 51.4 51.6
n1 (PCA) 800Kx50Lx800K 33.9 49.8 52.1 52.4
n2 (PCA) 800Kx100Lx800K 34.0 49.8 52.1 52.4

n3 (NLCA) 800Kx2000Lx50NLx2000Lx800K 34.1 49.9 52.7 52.6
n4 (NLCA) 800Kx2000Lx100NLx2000Lx800K 34.1 50.0 52.9 52.6

n5 (autoencoder) 800Kx2kNLx50NLx2kNLx800K 34.2 50.2 53.1 52.8
n6 (autoencoder) 800Kx2kNLx100NLx2kNLx800K 34.3 50.2 53.2 52.8

additional features inferred from PCA setup do not seem to provide
better clues for translations, mainly due to its linear mixing nature of
the hidden layer. Our sparse setup (baseline2) already had integrated
feature selection, and pruned the noisy ones via cross validations.
On top of this, PCA with mainly linear layer does not seem to be
very useful yet.

Comparing n3, n4, to the PCA setup, it clearly showed the use-
fulness of the non-linearity for mixing the features. However, the
training time for learning the parameters are significantly slower
than the PCA ones due to the parameter space. We empirically
choose 2000 nodes in the 2nd layer and the layer to the last; as
also,mentioned in the sparse feature setup, after careful feature se-
lection and optimizations, the informative feature list after pruning is
around 2300. due to long training epoch for learning such networks,
we did not try other parameters. With 100 dimensions in the middle
layer, it seems to be helpful for improving the translation a little bit
more. Yet, the difference is only marginal for test set 2 (tst2) consid-
ering n4 and n3. However, the improved from baseline2 (sparse) for
n3 and n4 are statistically significant.

Similar observations for improvements were observed for the
set up of n5 and n6, in which all the layers are sigmoid (non-linear).
The difference between n5 and n6 are not significant, but the im-
provement over baseline2 is significant esp. for test set 2 (tst2),
in which an improvement of almost 1.2 on BLEU. The compan-
ions over NLCA setups showed, again, the non-linarlity seems to be
one of the key factor for encoding additional information beyond the
sparse features.

Overall, comparing n6 with the sparse feature baseline sparse
in Table 4, we observed better generalizations to both development
and unseen test sets. In all the autoencoder setup, such as the 100
dense features in n6, used significantly more samples per dimension
during optimization, and thus can significantly mitigated the effect
of overfitting as presented by the sparse feature setup.

As also in related work as in the easy-adaptation in [6], such au-
toencoder features can be considered as shrinking the weights for the
overfitting sparse features as well. As the autoencoder features come
from the mixing of the spars features, they statistically co-occur with
these original features, and thus compete weights for the same sam-
ples for training these sparse features, with an effect of shrinking
the weights esp. for these over fitting ones as they now introduce ad-
verse samples which were otherwise not present for these over fitting
sparse features.

4.3. Related work

There have been some related work in using autoencoder or DNN
(deep neural network) for natural language processing; however,

most of them focus on word embeddings, mapping a word into a
fixed length real-valued vector. For instance, in continuous language
modeling such as work in [7], [8], [9] proposed multilayer neural
network for language modeling; more recently, works in [10] ap-
plies DNN on NLP tasks such as POS tagging and chunking. Works
in [11] used autoencoder to build a classifier for identifying the
reordering options in a ITG grammar for machine translation, in
which again the words are the input nodes for the neural network.
In [12], DNN was applied on word embedding to replace the emis-
sion probabilities for a HMM word aligner for machine translation.
Other recent works also start with word embeddings like in [13] for
Chinese word segmentations and POS tagging; [14] use a neural
network for sentiment analysis; [15] use neural network to embed
similar words in the context to encode better probabilities in the
translation model. Extending the work in [16], and with auxiliary
input layers in a RNN, work in [17] models the bilingual sentences
in the form of translation model and language model jointly for
improved translation results.

Different than these previous work, our work is embedding the
sparse features directly, which is of much more challenging than the
words as we have almost millions of input nodes easily, and more
difficult as the sparse features are naturally mostly overlapping, and
discrete-valued. We encode the sparse features further into derived
dense-alike features for more training samples to learn meaningful
weights; this improved on top of a strong baseline of using sparse
features.

5. DISCUSSIONS AND CONCLUSIONS

In this work, we proposed an autoencoder to map high-dimensional
sparse features onto lower dimensions with improved generaliza-
tions and translation quality relative to a strong baseline. The pro-
posed method helps to automate feature engineering, optimization
and feature selection in MT development and alleviates overfitting.
Future work includes feeding the errors from the translation engine
directly back into the learning of the neural network to ensure that
parameters learnt from the sparse features are better targeted.

Another area for research is to investigate the speeding up strat-
egy of the training. With millions of input nodes (in our case, 800K),
the first layer part alone is beyond a typical GPU memory (6GB in
most cases), and empirical engineering efforts have to be carried out
to enable the first layer parameter computing to happen in a CPU.
Even with our sampling strategy, we found the training is sensitive
to the random sampling/shuffling of the data and the size of the mini
batch, in each epoch. A better and faster training strategy for autoen-
coder for machine translation is also in our future work efforts.

7156

6. REFERENCES

[1] David Chiang, Kevin Knight, and Wei Wang, “11,001 new
features for statistical machine translation,” in Proc. NAACL–
HLT 2009, 2009, pp. 218–226.

[2] Mark Hopkins and Jonathan May, “Tuning as ranking,” in
Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing, Edinburgh, Scotland, UK., July
2011, pp. 1352–1362, Association for Computational Linguis-
tics.

[3] Peter F. Brown, Stephen A. Della Pietra, Vincent. J.
Della Pietra, and Robert L. Mercer, “The mathematics of sta-
tistical machine translation: Parameter estimation,” in Compu-
tational Linguistics, 1993, vol. 19(2), pp. 263–331.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
John Wiley and Sons, Inc., second edition, 2001.

[5] David Chiang, “Hierarchical phrase-based translation,” in
Computational Linguistics, 2007, vol. 33(2).

[6] Hal Daume III, “Frustratingly easy domain adaptation,” in
Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, Prague, Czech Republic, June
2007, pp. 256–263, Association for Computational Linguistics.

[7] Ahmad Emami and Frederick Jelinek, “A neural syntactic lan-
guage model,” in Machine Learning Research, 2005, pp. 60(1–
3):195–227.

[8] Holger Schwenk, Daniel Dechelotte, and Jean-Luc Gauvain,
“Continuous space language models for statistical machine
translation,” in Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, Sydney, Australia, July 2006, pp.
723–730, Association for Computational Linguistics.

[9] Holger Schwenk, Anthony Rousseau, and Mohammed Attik,
“Large, pruned or continuous space language models on a
gpu for statistical machine translation,” in Proceedings of the
NAACL-HLT 2012 Workshop: Will We Ever Really Replace
the N-gram Model? On the Future of Language Modeling for
HLT, Montréal, Canada, June 2012, pp. 11–19, Association for
Computational Linguistics.

[10] Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa, “Natural language pro-
cessing from alms scratch,” in Journal of Machine Learning
Research, 2011, pp. 12:2493–2537.

[11] Peng Li, Yang Liu, and Maosong Sun, “Recursive autoen-
coders for ITG-based translation,” in Proceedings of the 2013
Conference on Empirical Methods in Natural Language Pro-
cessing, Seattle, Washington, USA, October 2013, pp. 567–
577, Association for Computational Linguistics.

[12] Nan Yang, Shujie Liu, Mu Li, Ming Zhou, and Nenghai Yu,
“Word alignment modeling with context dependent deep neu-
ral network,” in Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), Sofia, Bulgaria, August 2013, pp. 166–175, Associa-
tion for Computational Linguistics.

[13] Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu, “Deep learn-
ing for Chinese word segmentation and POS tagging,” in Pro-
ceedings of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, Seattle, Washington, USA, October
2013, pp. 647–657, Association for Computational Linguistics.

[14] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher Potts,
“Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, Seattle,
Washington, USA, October 2013, pp. 1631–1642, Association
for Computational Linguistics.

[15] Hai-Son Le, Alexandre Allauzen, and François Yvon, “Contin-
uous space translation models with neural networks,” in Pro-
ceedings of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human
Language Technologies, Montréal, Canada, June 2012, pp. 39–
48, Association for Computational Linguistics.

[16] Thomas Milolov, Stefan Kombrink, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-
ral network language model,” in ICASSP, 2011, p. 55285531.

[17] Michael Auli, Michel Galley, Chris Quirk, and Geoffrey
Zweig, “Joint language and translation modeling with recur-
rent neural networks,” in Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, Seat-
tle, Washington, USA, October 2013, pp. 1044–1054, Associ-
ation for Computational Linguistics.

7157

