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ABSTRACT

This paper presents our recent progress on translating TED
speeches!, a collection of public lectures covering a variety of
topics. Specially, we use word-to-word alignment to compose
translation units of bilingual tuples and present a recurrent
neural network-based translation model (RNNTM) to capture
long-span context during estimating translation probabilities
of bilingual tuples. However, this RNNTM has severe data
sparsity problem due to large tuple vocabulary and limited
training data. Therefore, a factored RNNTM, which takes
bilingual tuples in addition to source and target phrases of the
tuples as input features, is proposed to partially address the
problem. Our experimental results on the IWSLT2012 test
sets show that the proposed models significantly improve the
translation quality over state-of-the-art phrase-based transla-
tion systems.

Index Terms— spoken language translation, recurrent
neural network, IWSLT.

1. INTRODUCTION

The IWSLT shared task is an annual evaluation of spoken lan-
guage translation organized by the International Workshop on
Spoken Language Processing (IWSLT) [1]. Since 2010, the
main focus of IWSLT has shifted to the translation of TED
speeches, given by leaders in various fields and covering an
open set of topics in technology, entertainment, design, and
many others. In many TED translation systems, the phrase-
based approach [2] is used, which, however, captures only
bilingual context within the phrase pairs and no information
outside the phrase pair is used. Therefore, they have poor
generalization power.

Neural networks are experiencing significant improve-
ments in the fields of image processing, acoustic modeling,
language modeling, etc. They use continuous representation
in lieu of standard discrete representation and show pow-
erful generalization than traditional methods [3]. Recently,
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some pioneer studies have proposed neural network transla-
tion models to enhance generalization of translation model
in statistical machine translation (SMT). The basic idea is
to project the words [4] and/or phrases [5] into a continu-
ous space and to perform the probability estimation in that
space. The authors reported good improvements in the BLEU
scores on some tasks. However, these translation models
used feed-forward neural networks, thus, only limited context
can be exploited. In language modeling, experimental results
[6, 7, 8] demonstrated that recurrent neural networks (RNN5s)
significantly outperform feed-forward neural networks even
though it is hard to train properly.

In this paper, we use word-to-word alignment to com-
pose translation units of bilingual tuples and present a re-
current neural network-based translation model (RNNTM),
which can enable the model to use arbitrary-length context
theoretically. This RNNTM is expected to estimate transla-
tion probabilities of bilingual tuples more accurately. How-
ever, this RNNTM suffers poor generalization power due to
large vocabulary of translation bilingual tuples. To address
the problem, a factored RNNTM is proposed, which takes
bilingual tuples in addition to source and target phrases of the
tuples as input features. To the best of our knowledge, this is
the first work to present good improvements with RNN trans-
lation models.

2. BILINGUAL TUPLE

Similar to n-gram translation model [9], we consider transla-
tion process like a language model of a particular bi-language
composed of bilingual tuples that are referred to as transla-
tion units. In this way, the translation model probabilities at
the sentence level are approximated by using bilingual tuples,
as described by the following equation.

m
p(t,s) = [ [ plurlue—1, w2, .., u1) M
k=1

where t refers to target sentence, s to source sentence, and uy,
to the k-th bilingual tuple of a given bilingual sentence pair.
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Fig. 1. Process of generating bilingual tuples from word-
aligned result.

Each bilingual tuple uj, contains a source phrase sj and its
aligned target phrase t;. Formally, ui=s:t.

Figure 1 illustrates the process of generating translation
unit ug. Each bilingual tuple uy is extracted from a word-
to-word aligned corpus in such a way that a unique segmen-
tation of the bilingual corpus is achieved [9]. In our imple-
mentation, GIZA++ with default settings is used to conduct
word-to-word alignments in both directions, source-to-target
and target-to-source [10].

Then, the main problem is to estimate the probability
p(ug|ug—1,ug—2,...,u1) in Eq. 1. Prior studies have pro-
posed many effective methods. For example, Marino et al.
[9] approximated the probability by using n-gram probability
p(ug|tug—1, Ug—2, ..., Ug—n+1) estimated via maximum like-
lihood and smoothing technique. Son et al. [5] and Schwenk
et al [11] proposed various feed-forward neural networks to
estimate the probability in continuous space. However, they
are restricted to limited-length context and remain a kind of
n-gram model.

3. PROPOSED METHOD

In order to use arbitrary-length context, this paper presents a
recurrent neural networks-based translation model (RNNTM)
to approximate the probability p(u;|w;—1, ug—2, ..., u1) in Eq.
1. The RNNTM consists of an input layer, a hidden layer with
recurrent connections that propagate time-delayed informa-
tion, and an output layer, plus the corresponding weight ma-
trices [12]. The input layer represents bilingual tuple encoded
using 1-of-n coding, and the output layer produces a proba-
bility distribution over all tuples. The hidden layer maintains
a representation of the sentence history thanks to the recur-
rent connections. Because the tuple uy are bilingual pair,
which results in the underlying vocabulary, hence the num-
ber of parameters, can be quite large. Table 3 in Section 4
shows the sizes of the difference vocabularies. Due to data
sparsity problem, this proposed RNNTM model suffers poor
generalization ability even though it is better than the smooth-
ing approach [9].
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Fig. 2. Architecture of the factored RNNTM, which will go
back to the RNNTM when we setvi_; =0 and v,_; = 0.

3.1. Factored RNNTM

To solve the problem, we extend the RNNTM model with
additional features, as shown in Figure 2. Specifically, it con-
sists of input layer x, hidden layer A (state layer), and output
layer y. The connection weights among layers are denoted by
matrixes U, V and W. Unlike the RNNTM, which predicts
probability p(uk|uk—1, hk—1), the factored RNNTM predicts
probability p(ug|ur—1,Sk—1,tk—1,hk—1) of generating fol-
lowing tuple u and is explicitly conditioned on the preced-
ing tuple ug_1, source of the tuple s;_1, and target of the
tuple tx—q. It is implicitly conditioned on the entire history
by the delay copy of hidden layer hi_;. For convenience,
Up—1, Sk—1 and t5_1 are called features.

In the input layer, each feature is encoded into the fea-
ture vector using the 1-of-n coding. The tuple ug_1, the
source phrase s;y—1 and the target phrase t;_1 are encoded
into |u|-dimension feature vector v}'_,, |s|-dimension feature
vector vy_; and |t|-dimension feature vector 1),’271, respec-
tively. Here, |u|, |s| and |¢| stand for the sizes of the tuple, the
source phrase, and the target phrase vocabularies. Finally, the
input layer zy, is formed by concatenating feature vectors and
hidden layer hg_1 at the preceding time step, as shown in the
following equation.

t
Tk = [U;clfh Uliflv Vk—1>5 hk—l] (2)

Using this concatenation vector, the factored RNNTM can
simultaneously integrate all features and the entire history in
stead of backing-off to fewer features and a shorter context as
factored n-gram LM does [13]. The weight of each feature is
represented in connection weight matrix U. Therefore, it has
better generalization than the RNNTM. In the special case
that s;—1 and tx_7 are dropped, the factored RNNTM goes
back to the RNNTM.

The hidden layer employs a sigmoid activation function:

1

hie = f(Ux ax), f(z) = 0=

3



The output layer is split into two parts to speedup training
and testing. Like [14], we map bilingual tuples into classes
with frequency binning. The first part estimates the proba-
bility distribution over all classes. The second computes the
probability distribution over the tuples that belong to class
c(ug), the one that contains predicted tuple ug. The compu-
tation can be expressed in Eq. 4.

vk = 9(V x hi), yi, = g(W x hy),
ex “)
9(za) = S e

Finally, probability p(ug|ur—1,Sk—1,tk—1,hk—1) is the
product of two probability distributions.

pluk|tur—1,Sk—1,th—1, hk—1) = p(c(ur)|x;) x p(uk|c(ur), ;)

)

Training the RNNTM and the factored RNNTM can be
performed with the back-propagation through time (BPTT)
algorithm. The matrixes are randomly initialized and updated
with BPTT over training data in 10-20 iterations.

4. EXPERIMENT

This paper uses the IWSLT2012 data sets, with the dev2010
as the tuning set, the tst2010, tst2011, and tst2012 as the test
sets. We experiment with two language pairs, with English as
source, German, French as target. For each language pair, we
built a baseline phrase-based translation system using stan-
dard settings in the Moses toolkit [2] and tune it with MERT
on the tuning set. The RNNTMs are used to re-score n-best
lists produced by the baseline systems. The n-best size is
at most 1000 for each test sentence. During the n-best re-
scoring, the weights of baseline features are fixed, the weights
of RNNTMs are tuned on the IWSLT dev2010 data set with
the L-BFGS optimization algorithm [15]. The proposed RN-
NTMs are evaluated on a small task and a large task. For the
parameters of both RNNTMs, we set the number of hidden
neurons in the hidden layer and classes in the output layer to
480 and 300.

4.1. Small Task

In the small task, the training data only contains the speech-
style bi-text, i.e., the human translation of TED speeches.
Specially, the corpora for the English-French and English-
German pairs contain 139K and 128K parallel sentences. The
LM is a standard 4-gram language model with the Kneser-
Ney discounting trained on the target side of bi-text corpus.
Both of the RNNTMs are trained on the bilingual tuple se-
quences extracted from the same speech-style bi-text.

In Table 1, we compare the perplexities of the n—gram
and the RNNTMs. It shows that the factored RNNTM out-
performs the n-gram model by 22%.
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English-French  English-German

size of training tuples  2.01M 1.82M
n-gram  229.9 288.3
RNNTM  206.9 (10.0%)  262.3 (9.0%)
factored RNNTM  178.4 (22.6%)  222.2 (22.9%)

Table 1. Perplexities on the tst2012. The numbers in paren-
theses are the relative improvements over the n-gram model.

English-French

tst2010 tst2011 tst2012
Baseline | 30.15 35.97 35.48
+RNNTM | 30.51 (0.4) 36.11(0.2) 36.44 (1.0)
+factored RNNTM | 31.36 (1.2) 37.63(1.7) 37.54(2.1)
+Both | 31.46 (1.3) 37.62(1.7) 37.21(1.8)
English-German
Baseline | 20.29 21.48 19.30
+RNNTM | 20.67 (0.4) 21.85(0.4) 19.56(0.2)
+factored RNNTM | 21.44 (1.2) 22.34(0.9) 20.01 (0.7)
+Both | 21.49 (1.2) 22.41(1.0) 20.05(0.7)

Table 2. BLEU scores for the small task. The numbers in
parentheses are the absolute improvements over the baselines.

In Table 2, we summarize the results in terms of BLEU
scores. The main findings are: 1. The RNNTM yields
slight improvements of 0.2%-0.4% over the 1-best decoder
output (Baseline) on most the test sets. 2. The factored
RNNTM essentially outperforms the baseline and the RN-
NTM systems for all the test sets. The improvements over
the baseline and the RNNTM for the English-French pair
range 1.2%-2.1% and 0.8%-1.5%. For the English-German
pair, the improvements over the baseline and the RNNTM
are between 0.7%-1.2% and 0.5%-0.8%. This indicates that
the factored RNNTM with factorization can well address the
data sparsity problem of the RNNTM. For better understand-
ing, Table 3 lists the vocabulary sizes of the tuples, source
and target phrases in the RNNTMs, which shows that the
vocabularies are very large. Further, the improvements for
the English-German pair are comparatively smaller than that
for the English-French pair. This may lie in: its vocabulary
is larger and the sparsity problem is more serious. 3. Adding
both of the RNNTMs, however, does not achieve significant
improvements.

4.2. Large Task

In the large task, the training data includes both speech-style
and text-style bi-text corpora. The text-style bi-text cor-
pora are collected from the WMT2012 campaign (http:
//www.statmt.org/wmt12),including CommonCrawl,
NewsCommentary, and Europarl. Totally, the bi-text training
corpora for the English-French and English-German pairs



Tuple Source  Target

phrase phrase
Small Task  en-fr 308K 130K 175K
en-de 315K 148K 196K
Large Task  en-fr 1,146K 393K 605K
en-de 1,247K 447K 715K

Table 3. Vocabulary sizes of various features.

contain 4.35M and 3.85M parallel sentences. The language
model is obtained by linear interpolation of several 4-gram
models trained on the target side of bi-text corpora.

The baseline systems are constructed on all the parallel
corpora. However, the RNNTMs are only trained on the
speech-style and the selected text-style bi-text>. This is be-
cause it is time-consuming to train the RNNTMs on all the
available bi-text. Table 3 lists the vocabulary sizes. In Table
4, the results are reported. We observe that: 1) The proposed
RNNTMs (+Both) trained on the speech-style data can even
significantly enhance the baselines by 0.6%-1.2% and 0.4%-
0.7% for the English-French and English-German pairs. 2)
The improvements become larger with increasing of training
data, for example, the Both'®"#¢ enhances the BLEU scores
by 1.2%-1.6% for the English-French and 0.9%-1.1% for the
English-German. Both of the RNNTMs can be expected to
further increase the performance when we train it on bigger
data.

5. RELATION TO PRIOR WORK

In SMT, neural networks are used either in language model or
translation model.

In language modeling, an influential work is the feed-
forward neural networks proposed by Bengio, et al. [3], in
which, word is projected onto a continuous space and n-gram
probabilities are estimated on that space in lieu of standard
discrete space. Afterwards, Schwenk et al. [17] extended
this neural network LM for statistical machine translation and
improved BLEU scores significantly. Arisoy et al. [7] pro-
posed a deep feed-forward neural network LM using multiple
hidden layers instead of single hidden layer. Feed-forward
neural network LMs, which predict following word based on
any possible context of length n-1 history, remain a kind of n-
gram LM. To address this problem, Mikolov, et al. [14] and
Wu et al. [18] proposed recurrent neural network LM that can
use infinite-length history theoretically.

In translation modeling, most studies consider translation
process like a standard n-gram LM task by extracting tuple
units from word-aligned results. Schwenk et al. [11] applied
the feed-forward neural networks to estimate translation prob-

2We employ cross entropy difference criterion [16] to select 1/8 of text-
style bi-text.
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| 12010 tst2011 tst2012
English-French
Baseline | 32.92 38.67 39.41
+RNNTM | 33.26 (0.4) 39.05(0.4) 39.67 (0.3)
+factored RNNTM | 33.49 (0.6) 39.77 (1.1)  40.01 (0.6)
+Both | 33.50 (0.6) 39.88(1.2) 39.95 (0.6)
+RNNTM™ 2 | 3350 (0.6) 40.17 (1.5) 40.05 (0.7)
+factored RNNTM" ¢ | 33.41 (0.5) 39.75(1.1) 40.19 (0.8)
+Both™# | 34.05(1.2) 40.31(1.6) 40.62(1.2)
English-German
Baseline | 22.29 23.67 20.83
+RNNTM | 22.36 (0.2) 23.71(0.0) 20.90 (0.1)
+factored RNNTM | 22.86 (0.6) 24.16(0.5) 21.44 (0.6)
+Both | 22.73 (0.4) 24.16(0.5) 21.52(0.7)
+RNNTM™2 | 22,82 (0.5) 23.83(0.1) 21.13(0.3)
+factored RNNTM™ ¢ | 2320 (1.0) 24.64(0.9) 22.04 (1.2)
+Both!™® | 23.19(0.9) 24.58(0.9) 21.92(1.1)

Table 4. BLEU scores for the large task. The numbers
in parentheses are the absolute improvements over the base-
lines. The RNNTMs with superscripts a8 means that they
are trained on larger data as described in Section 4.2. The RN-
NTMs without superscripts means they are the models used
in the small task.

abilities of tuple units. Le, et al. [5] improved this idea by
distinguishing the source and target sides of the tuple units,
to address data sparsity issues. In [4], a feed-forward neu-
ral network independent from bilingual tuples was proposed.
This model can infer meaningful translation probabilities for
phrase pairs not seen in the training data. However, the im-
provements of BLEU scores were slight. This paper is rele-
vant to them. However, our approach uses RNN with different
factorizations and can exploit long-span context. [19, 20] pro-
posed joint language and translation modeling with RNN, in
which the translation modeling slightly enhanced the BLEU
scores.

6. CONCLUSION

This paper has presented recurrent neural networks (RNNs)
and factored RNNs to estimate the probabilities of translation
units (bilingual tuples) in a phrase-based SMT system. The
experiments on the IWSLT2012 test sets show that the pro-
posed RNNTMs can essentially improve the BLEU scores by
2.0% for the English-French pair and 1.5% for the English-
German translation pair.

In the future, we will speed up the training on bigger data
and evaluate them on such distant language pairs as English-
Chinese (Japanese). Because the structural correspondence
between English and Chinese (Japanese) is more complex
than that between Indo-European language pairs.
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