
ZERO-RESOURCE SPOKEN TERM DETECTION
USING HIERARCHICAL GRAPH-BASED SIMILARITY SEARCH

Kazuo Aoyama, Atsunori Ogawa, Takashi Hattori, Takaaki Hori, and Atsushi Nakamura

NTT Communication Science Laboratories, NTT Corporation
2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan

ABSTRACT

This paper presents fast zero-resource spoken term detection (STD)

in a large-scale data set, by using a hierarchical graph-based similar-

ity search method (HGSS). HGSS is an improved graph-based simi-
larity search method (GSS) in terms of a search space for high-speed

performance. Instead of a degree-reduced k-nearest neighbor (k-

DR) graph for GSS, a hierarchical k-DR graph, which is constructed
based on a cluster structure in the corresponding k-DR graph, is used

as an index for HGSS. A search algorithm for the hierarchical k-DR

graph effectively utilizes the cluster structure, resulting in the reduc-
tion of the search space. HGSS inherits the useful property of GSS;

it is available for any data sets without limits on a data type nor a

defined dissimilarity since a graph is a general expression of a rela-

tionship between objects. A vertex and an edge in the hierarchical
graph correspond to a Gaussian mixture model (GMM) posterior-

gram segment and the relationship between a pair of GMM poste-

riorgram segments, which is measured by dynamic time warping,
respectively. Experimental results demonstrate that HGSS success-

fully reduces the computational cost by more than 40 % at nearly the

same accuracy, compared to GSS.

Index Terms— Zero resource, Spoken term detection, Query-

by-example search, Neighborhood graph index, Dynamic time warp-
ing

1. INTRODUCTION

Spoken term detection (STD) has attracted attention as the volume
of speech data stored in repositories has been growing continuously

[1, 2]. The predominant approach is to convert the speech data into

linguistic representation in advance by automatic speech recognition
(ASR), and then to execute search by a text query term [1]. This ap-

proach is useful for tasks which are well-resourced in terms of ASR

model construction. In contrast, the demand for approaches in low-
resource situations has increased recently, where ASR is not avail-

able, e.g., STD for a minor language [2]. Some of such approaches

are aimed at achieving zero-resource STD that does not require any
type of prior linguistic knowledge such as transcriptions, language

models, or pronunciation dictionaries [3, 4, 5, 6].

Zero-resource STD, unfortunately, has drawbacks of rather low

performance in accuracy and speed in spite of its potential avail-
ability. The low accuracy is due to the fact that the zero-resource

STD must rely only on the acoustic information since the linguis-

tic knowledge is not available. The low speed comes from the fact
that an indexing and a search algorithm are still under development,

which are comparable to well-established algorithms for text search

employed in ASR-based STD systems.

To improve the accuracy, many efforts have been made regarding
the development of an appropriate unsupervised learning algorithm

and the selection of both an acoustic feature representation and a def-

inition of a dissimilarity between features [3, 6, 7, 8]. For the high
speed performance, a template matching approach based on dynamic

time warping (DTW) has been proposed [9, 10, 11, 12, 13]. In par-

ticular, the methods reported in [9, 10, 13] share the common feature
and dissimilarity; a Gaussian mixture model (GMM) posteriorgram

Utterances
containing segments

similar to query

Graph-index construction: Off-line

Multiple hierarchical graphs
with distinct segment lengths

Graph search: On-line

GMM
posteriorgram

sequences

Hierarchical graph
construction

algorithm

Data set

Index selection
algorithm

Query GMM
posteriorgram

segment

Graph search algorithm
using hierarchy

Query

Utterances

Spoken instance

Graph index

Graph index

Result

Fig. 1. Hierarchical graph-based similarity search system.

for a feature of each time frame, and the negative logarithm of the

probability that two posteriorgrams are generated from the same dis-

tribution for a dissimilarity between them [14]. Of these, we focus
on the graph-based similarity search method (GSS) [13] that uses

graph index information, due to its high-speed property and the ver-

satility. Once a graph index is constructed, GSS can be performed
very fast, which is advantageous when there are a lot of similarity

search tasks for distinct queries to be performed in the same data set.

GSS is also applicable to any data sets without limits on a data type
nor a dissimilarity [15, 16, 17] (Section 4).

In this paper, we propose a hierarchical graph-based similarity

search method (HGSS), an improved GSS, for further high-speed
performance. HGSS first constructs a hierarchical degree-reduced

k-nearest neighbor graph (k-DR graph) as an index from a posterior-

gram sequences corresponding to utterances based on the dissimilar-

ity by a novel unique technique (Section 5.1). This technique finds
clusters in the k-DR graph and stratifies the graph by exploiting the

cluster structure. Given a query posteriorgram segment, HGSS ef-

ficiently finds a set of posteriorgram segments similar to the query
from the posteriorgram sequences by a graph search algorithm which

limits a search space by exploiting the hierarchy of the k-DR graph

effectively (Section 5.2). The proposed STD system based on HGSS

is shown in Fig. 1. We demonstrate in experimental results on the

MIT lecture corpus [18] that HGSS successfully reduces the com-

putational cost by over 40% than GSS at nearly the same accuracy
(Section 6).

2. RELATED WORK

We review the three related topics: fast zero-resource STD, similar-

ity search using a neighborhood graph index, and graph clustering.

2.1. Fast Zero-Resource Spoken Term Detection

A method in [9], which we call LB, performs fast STD by reducing
the number of DTW-score calculations based on the lower bound on

a DTW score that is evaluated on-line. By applying a piecewise ag-

gregation approximation technique to LB, the LB achieved the speed-
up by almost 30 % [10]. Most recently, two fast STD methods have

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7143

been proposed which exploit an index built off-line [11, 12]. One uti-

lizes locality-sensitive hashing (indexing and approximately similar-
ity search), and executes a trajectory search to find a similar region

in a data set to the query segment [11]. The other method employs

a k-means tree as an index [12]. Note that the parameter k in the
k-means algorithm denotes the number of centroids in clusters, and

differs from graph structural parameter k in the k-DR graph in Sec-

tion 1. Both the methods have the following restrictions on a search
space which stem from the index construction algorithms. An object

is represented by a feature vector and only a distance can be used,

which satisfies the distance axiom. This means that these can not

be applied to all data sets, e.g., a data set with a Kullback-Leibler
divergence as a dissimilarity. In contrast, the proposed method has

no restriction on a data type or a dissimilarity, since a k-DR graph,

which is used as an index, is a general expression of a relationship
between objects and is constructed based on a rank order.

2.2. Similarity Search Using a Neighborhood Graph Index

Neighborhood graphs have been used as useful structures in vari-
ous research fields such as computational geometry, computer vi-

sion, pattern classification, and search [19, 20]. In particular, a k-

nearest neighbor (k-NN) graph has been studied as a search index
[15, 21, 22, 23, 24]. A k-NN graph has an edge between a pair of

vertices x and y if x is among the k closest vertices to y or vice versa.

Note that the term “close” means a concept measured by not only a
distance but also dissimilarity. A k-NN graph has useful properties

for similarity search [15] which resemble those observed in small-

world networks [25, 26]: homophily, i.e., a tendency of like to as-

sociate with like [27] and a very small average shortest path length.
These properties enable a search algorithm to reach the vertex clos-

est to a given query vertex from an initial vertex chosen at random

with a few steps. Moreover, a k-DR graph for improving search per-
formance has been applied to a variety of data sets: large-scale docu-

ments [15], images [17], GMMs with a Kullback-Leibler divergence

as a dissimilarity [16], and GMM posteriorgram sequences [13]. The
similarity search using the k-DR graph is described in Section 4.

2.3. Graph Clustering

Graph clustering (or community detection) has become an impor-
tant technique due to the growing demand for analyzing graph data

sets from social networks to biological networks [28, 29, 30, 31].

In most of graph clustering techniques, a cluster in a graph is de-
fined as a dense subgraph which has more within-cluster edges than

between-cluster edges. A partitioning approach finds cluster bound-

aries by using a graph feature such as edge-betweenness centrality

and produces clusters by partitioning the whole graph along the clus-

ter boundaries [28]. In contrast, an agglomerative approach joins

clusters in pairs by evaluating some measure such as modularity

from an initial state where each vertex is the sole member of each
cluster [29]. Furthermore, faster algorithms in the approach have

been proposed [30, 31]. The computational costs which these tech-

niques require are not low yet for a large-scale data set. Our unique
technique that produces a cluster structure without an extra high

computational cost is detailed in Section 5.1.

3. PROBLEM FORMULATION

We deal with zero-resource STD as the following problem identical
to that in [13] (For details to [13]). Given a set of GMM posteri-

orgram sequences produced from an utterance set, multiple query

GMM posteriorgram segments qi (i = 1, · · · , m) produced from
spoken instances for an identical query keyword, a normalized DTW

score D(qi, x) between qi and x (x is a segment in the GMM pos-

teriorgram sequence), and integer T which denotes the number of
resultant utterances, efficiently find the T -best utterances based on a

fusion score of the multiple query GMM posteriorgram segments.

x1x1

x2x2

x3
x3

x4x4

x5x5

x6x6

x7x7

x8x8

query
attractor

attractor
=target

6=target

start
start

(a) 2-DR and 2-NN graph (b) MSGS and BFS algorithm

Fig. 2. GSS operations: (a) Graph construction for the 2-DR and the

2-NN graph with the eight vertices (x1, · · · , x8). The 2-DR graph

does not have the two edges depicted by the dashed lines in the 2-

NN graph. (b) Graph search in the 2-DR graph. The MSGS algorithm

starting at x1 and x8 terminates the attractors x3 (target) and x6,

respectively. The BFS algorithm finds x5 which the MSGS did not.

4. GRAPH-BASED SIMILARITY SEARCH

A graph-based similarity search method (GSS) for solving the fore-

going problem is characterized by the following three points; pre-
constructing multiple k-DR graphs as index candidates for a query

segment with any length, selecting an appropriate index from the

candidates when a query is given, and performing graph search with
a multi-start greedy search and a breadth-first search algorithm. A

k-DR graph construction and a graph search algorithm, which are

subject to improvement in Section 5, are described below.

4.1. k-DR Graph Construction

A k-DR graph is a subgraph of a k-NN graph, and has a smaller de-
gree, i.e., fewer edges of a vertex, than the k-NN graph [15] as shown

in Fig. 2(a). A k-DR graph is recursively constructed by referring to

a K-NN list (K ≥ k) that consists of top-K vertices closest to each
vertex. A k-DR graph construction algorithm first connects each ver-

tex to its closest vertex with an edge, i.e., a 1-DR graph is the 1-NN

graph. For k ≥ 2, the k-DR graph is constructed from the (k−1)-

DR graph by the following rule. An edge from vertex x to its k-th

closest vertex x[k] is generated only if a greedy search (GS) algo-

rithm starting from x[k] does not reach x. The GS algorithm moves
a current vertex to the adjacent vertex closest to a query vertex after

evaluating the dissimilarities between the query and all the adjacent

vertices. By this rule, the k-DR graph with fewer edges achieves the
same reachability by the GS algorithm as the k-NN graph. Since re-

ducing the degree leads to decreasing the evaluation cost, the k-DR

graph enables the GS algorithm to work efficiently.

4.2. Graph Search

Top-T vertices closest to a query vertex are found in the constructed

k-DR graph by a combination of two algorithms; a multi-start greedy

search (MSGS) and a breadth-first search (BFS) algorithm [16].

The MSGS algorithm plays a role of finding a target, which is the

closest vertex to a query, at a high search success rate. To achieve

the high search success rate, the MSGS algorithm starts from mul-
tiple initial vertices chosen at random because each GS algorithm

terminates at an attractor, which is a current vertex closer to the

query than its adjacent vertices, regardless of whether the attractor
is the target as shown in Fig. 2 (b). The MSGS algorithm collects

a tentative set of the top-T vertices (a tentative top-T set) on search

paths, and provides both the tentative top-T set and the attractors to
the successive BFS algorithm.

The BFS algorithm determines the top-T set by updating the
tentative top-T set as follows. The BFS algorithm repeatedly sets

an attractor in the tentative top-T set at a root (initial) vertex in as-

cending order of its dissimilarity to the query as shown in Fig. 2(b).
Each iteration terminates if the tentative top-T set is not updated at

a current depth.

7144

#
co

m
p
o
n
en

ts

kc

1

10000

20000

30000

40000

0 4 8 12

Length:50
Length:100

(a) Number of components

N
o
rm

al
iz

ed
fr

eq
u
en

cy

Normalized component size

10−6

10−4

10−2

10−6 10−4 10−2

Length:50
Length:100

(b) Size distribution

Fig. 3. Characteristics of connected components that are generated

in graph construction process in the case of two distinct GMM pos-

teriorgram segment lengths, 50 and 100: (a) number of connected

components with kc, (b) normalized component size distribution.

5. PROPOSED HIERARCHICAL GSS

Our goal is the speed-up of GSS to accomplish fast zero-resource
STD in a large-scale data set. The main idea is to limit a search

space, i.e., the number of vertices that are subject to the dissimilarity

calculation, by exploiting a latent cluster structure in a k-DR graph
for GSS. In the setting described in Section 3, several consecutive

posteriorgram segments (vertices) in an utterance are often similar

(close) to each other. These vertices form a dense subgraph (cluster)
described in Section 2.3. By regarding the dense subgraph as one

vertex, a supernode, we can construct a hierarchical k-DR graph.

We first introduce a unique clustering technique, and then detail an
MSGS algorithm and a BFS algorithm using a cluster structure.

5.1. Clustering for Hierarchical Graph Construction

We focus attention on connected components that are generated in
the k-DR graph construction process described in Section 4.1. A k-

DR graph is constructed by increasing the graph structural parameter

kc one by one from 1 to k. In this process, vertices are agglomer-
ated with kc and form several connected components. We utilize

the connected components in the kc-DR graph as clusters rather than

those obtained by the existing graph clustering techniques, which are
applied to the completed k-DR graph, since there is no need for an

additional operation.

Figure 3(a) shows the foregoing process when we used as a ver-

tex two distinct lengths of the posteriorgram segments, 50 and 100,

where the number of segments is almost 1×106 . Suppose that kc =0
(Not illustrated in Fig. 3). Then, the graph has no edge, and the num-

bers of both the isolated components and the vertices in the graph are

the same. Next, when kc increases to 1, each vertex is connected to
its closest vertex, and many connected components appear. At some

value of kc, each and every vertex in the graph become a member of

a one and only connected component. The growth of the components
with kc depends on the data set, and is shown in Fig. 3(a).

We exploited the connected components that were generated

when kc = 1 since the number of the connected components and
the component size distribution were suitable to similarity search.

It is desired for our efficient search that a graph has an appropri-

ate number of uniformly-sized connected components, i.e., no gi-
ant component. Figure 3(b) shows the distribution of the connected

component sizes normalized by the number of all the segments when

kc =1. We observed that the maximum normalized component size
was less than one-hundredth even when the segment length was short

such as 50 and there is no giant component in the 1-DR graph.

We assign a cluster identification number (CIDN) to each con-

nected component (cluster), and attach a CIDN to the vertex that

belongs to the corresponding cluster with the CIDN. We regard a set
of vertices whose CIDNs are the same as a supernode, and use the

edges in a k-DR graph as the edges between the supernodes, i.e.,

maintain the edge structure. Thus we can construct a hierarchical k-
DR graph based on the connected components (clusters) generated

with kc =1. Hereafter, we call kc the clustering parameter.

(a) 3-DR graph (b) GS algorithm (c) Improved GS

x1

x2

x3

x4x4x4

x5x5x5

x6

x7

x8

x9x9x9

x10

x11

x8= startx8= start

qqq

targettarget

Fig. 4. GS operations in the 3-DR graph with the 11 vertices denoted

by xi, i=1, · · · , 11. The clusters are illustrated with the gray areas

and the query is denoted by q. The improved GS algorithm starting

at x8 in (c) omits the dissimilarity calculations of x4 and x9 while

the GS in (b) executes them.

(a) 3-DR graph (b) BFS algorithm (c) Improved BFS

CIDN=1 CIDN=1CIDN=1

CIDN=2 CIDN=2CIDN=2

CIDN=3 CIDN=3CIDN=3

qqq

root rootroot

Fig. 5. BFS operations in the same setting as Fig. 4. CIDNs are

assigned to the three clusters each and the BFS algorithm starts at the

root. The depths from the root are illustrated with the contour lines

in (a) and the vertices in the same depth are given the same color.

The improved BFS algorithm in (c) does not evaluate the vertices in

the cluster with CIDN= 3 while the BFS in (b) does. Note that the

termination condition is not used because of too few vertices.

5.2. Graph Search Using Cluster Structure

A graph search algorithm in HGSS, which consists of the MSGS and
the BFS algorithm using a cluster structure, reduces the number of

dissimilarity calculations by selecting vertices based on their CIDNs.

For simplicity, we explain the GS algorithm instead of the MSGS

algorithm, and only the BFS algorithm starting at the target.

The conventional GS algorithm sets the next current vertex at

the closest vertex to a query in all the adjacent vertices of a current
vertex. To determine the closest vertex, all the adjacent vertices are

evaluated regarding their dissimilarities to the query. In contrast, if

there are more than one adjacent vertex that shares the same CIDN,
only the closest vertex to the current vertex among the adjacent ver-

tices is evaluated in the improved GS algorithm in HGSS. Only if a

current vertex is an attractor, the GS algorithm evaluates the remain-
ders in each cluster, i.e., all the adjacent vertices. The GS algorithm

terminates if no adjacent vertex is closer to the query, i.e., the cur-

rent vertex is the attractor again. The limited dissimilarity evaluation
leads to the reduction of the computational cost. For intuitive un-

derstanding of the difference between the GS and the improved GS

algorithm, their comparison is shown in Fig. 4.

The conventional BFS algorithm requires a high computational

cost because it calculates all the vertices at each depth from a root

(target). The improved BFS algorithm evaluates only the vertices
whose CIDNs are the same as those of the vertices within the depth

of two from the target. There are two reasons for selecting the depth

of two. One comes from the k-DR graph structure. Because of
the graph construction rule in Section 4.1, the k′-th closest vertex

(k′ ≤ k) to the target is not always connected to the target direc-

tory. Instead of only the adjacent vertices, we regard the vertices
at the depth of two as the candidates. The other is inspired by a

small-world network like [32]. A small-world network has the ten-

dency that a neighbor’s neighbor (a vertex at the depth of two) is also
likely to be a neighbor as described in Section 2.2. This means that

a vertex at the depth of two may be close to the target. We regard the

vertices with the same CIDNs as those at the depth of two as the can-
didates. Thus, the improved BFS algorithm limits the search space.

The operation of the improved BFS algorithm is shown in Fig. 5.

7145

P
re

ci
si

o
n

P@1

HGSS
GSS

P@10

LSC

P@N

LB

0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Average precisions of HGSS, GSS, LSC, and LB.

6. EXPERIMENTS

6.1. Experimental Setup

We used the MIT lecture corpus [18] for an utterance set to carry

out search performance evaluation. The utterance set consisted of
54,581 utterances for a training set and 3,000 utterances for a test

set. A set of 13-dimensional Mel-Frequency Cepstral Coefficients

(MFCCs) was extracted from the utterance set. The sampling rate
was 16 kHz, and the frame size and the frame shift were 25 ms and

10 ms, respectively. A GMM with 50 mixture components was es-

timated from the set of the MFCC vectors in the training set. A 50-
dimensional posteriorgram for each frame in the utterance set was

produced from the GMM.

For STD, we chose 20 keywords and picked up 10 distinct spo-

ken instances for each keyword as the query from the training set.
This was done to set up the similar conditions to those in [5] and [13].

We employed a DTW score normalized by a query segment length

as the dissimilarity, and obtained the 100-best utterances which con-
tained the most similar 100 distinct segments to the query segment.

In the DTW, the warping path was limited within the bandwidth

R = 6 as in [5]. The 100-best-utterance lists, where each list con-
sisted of 100-best utterances for each query segment, were merged

into a single list for each keyword. The utterances in the merged sin-

gle list were sorted in ascending order of the fusion score calculated
likewise to previous studies; it was done in the same manner as [13]

and adopted the fusion parameter α=0.5 equally to [5].

We compared the proposed HGSS with three existing methods:

GSS [13], LSC [13], and LB [9]. The comparison was carried out re-
garding two search performance criteria; the accuracy and the online

computational costs, i.e., speed. The accuracy was evaluated by the

average precisions of the sets of top-X utterances to the ground truth
for all the keywords; X =1, 10, N , where N denotes the number of

the correct utterances. The speed was measured by three ways: the

number of the DTW score calculations, the number of local dissimi-
larity calculations, and CPU time. We performed the experiments on

a computer system equipped with an Intel Xeon E7-4870 2.4 GHz.

In the HGSS and the GSS method, we employed 11 distinct k-

DR graphs constructed from the test set. The k-DR graph’s segment
lengths were set at 10, 20, · · · , 100, 110, and the graph structural

parameter k was fixed at 100. In the GS algorithm with multiple L

initial vertices, L was set at 30. Furthermore, for the HGSS method,
we set the clustering parameter kc as kc =1.

6.2. Search Performance: Accuracy and Speed

The proposed HGSS accomplished the zero-resource STD at around

twice the speed and also at nearly the same accuracy as the GSS.
Besides, the HGSS operated much faster than both LSC and LB by

almost 25 times and 50 times, respectively.

Figure 6 shows the average precisions of the sets of top-X ut-

terances, which are denoted by P@X, X =1, 10, N , of HGSS, GSS,
LSC, and LB. The average precisions of the four methods were nearly

the same at each P@X.

Figures 7(a) and (b) show the average numbers of DTW-score
calculations and local-dissimilarity calculations with logarithmic

#
ca

lc
u
la

ti
o
n
s

(
lo

g
sc

a
le

)

103

104

105

106

HGSS GSS LSC LB

Down by

45%

(a) Exact DTW score

#
ca

lc
u
la

ti
o
n
s

(
lo

g
sc

a
le

)

106

107

108

109

HGSS GSS LSC LB

Down by

45%

(b) Local dissimilarity

Fig. 7. Average number of (a) exact DTW-score calculations, (b)

local-dissimilarity calculations of HGSS, GSS, LSC, and LB.

C
P

U
ti

m
e

(s
ec

)

(
lo

g
a
ri

th
m

ic
sc

a
le

)

HGSS GSS LSC LB
10−1

1

101

102

103

Min
Ave

Max

Down by

>40%

Fig. 8. CPU time of HGSS, GSS, LSC, and LB.

scale, respectively. Compared to the GSS, the proposed HGSS

reduced the numbers of the DTW-score calculations and the local-

dissimilarity calculations by 45%, respectively. These numbers
were much smaller than those of LSC and LB by one order to two

orders of magnitude. HGSS selectively calculates a DTW-score

between a query segment (query vertex) and a segment (vertex) in
an utterance by using the segment’s CIDN. In the experiments, the

vertex-selection strategy in the BFS algorithm was, in particular,

useful to reduce the search space. Consequently, the number of the
DTW-score calculations in the BFS algorithm decreased, and the

required CPU time was reduced.

Figure 8 shows the CPU time, which the four methods required,

with logarithmic scale. The three points of each method in Fig. 8,
which are denoted by Max, Ave, and Min, correspond to the max-

imum, the average, and the minimum CPU time of all the spoken

queries. Owing to the reductions of the number of the DTW-score
calculations and the local-dissimilarity calculations, the HGSS suc-

cessfully reduced more than 40% from the average CPU time (Ave)

required by the GSS which was the best method of the existing three.

7. CONCLUSION AND FUTURE WORK

To accomplish fast zero-resource spoken term detection (STD) in the
large-scale data set, we developed a hierarchical graph-based simi-

larity search method (HGSS). Compared to the conventional GSS,

the proposed HGSS achieved the zero-resource STD at around twice

the speed and also at nearly the same precisions; P@1, P@10, and
P@N . This is because the graph search algorithm successfully lim-

ited the search space by effectively exploiting the clusters in the hi-

erarchical k-DR graph constructed from the data set.
HGSS can be combined with any method for extracting acous-

tic features or determining a dissimilarity between features since a

graph is a general expression of a data set with a dissimilarity and
the hierarchical k-DR graph is constructed based on a rank order re-

garding a dissimilarity. If such a method achieving high accuracy is

developed, a zero-resource STD system with the combination of the
method and HGSS can accomplish high speed and accuracy at once.

We will develop a graph clustering algorithm that generates a

structure appropriate to search, e.g., a structure where cluster sizes
are uniform, instead of the proposed technique using a kc value con-

trolled by the graph construction algorithm. Besides, search algo-

rithms will be developed which utilize the cluster structure more ef-
fectively.

7146

8. REFERENCES

[1] C. Chelba, T. J. Hazen, and M. Saraçlar, “Retrieval and brows-

ing of spoken content,” IEEE Signal Process. Mag., vol. 25,
no. 3, pp. 39–49, May 2008.

[2] J. Tejedor, M. Fapšo, I. Szöke, J. H. Černocký, and
F. Grézl, “Comparison of methods for language-dependent

and language-independent query-by-example spoken term de-

tection,” ACM Trans. Inform. Syst., vol. 30, no. 3, August 2012.

[3] F. Metze, X. Anguera, E. Barnard, M. Davel, and G. Gravier,

“The spoken WEB search task at MEDIAEVAL 2012,” in
Proc. Int. Conf. Acoustics, Speech, Signal Process., May 2013,

pp. 8121–88125.

[4] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudan-

pur, K. Church, N. Feldman, H. Hermansky, F. Metze, R. Rose,

M. Seltzer, P. Clark, I. McGraw, B. Varadarajan, E. Bennett,
B. Borschinger, J. Chiu, E. Dunbar, A. Fourtassi, D. Harwath,

C.-Y. Lee, K. Levin, A. Norouzian, V. Peddinti, R. Richard-

son, T. Schatz, and S. Thomas, “A summary of the 2012
JHU CLISP workshop on zero resource speech technologies

and models of early kanguage acquisition,” in Proc. Int. Conf.

Acoustics, Speech, Signal Process., May 2013, pp. 8111–8115.

[5] Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spot-

ting via segmental DTW on Gaussian posteriorgrams,” in Proc.

Int. Workshop on Acoustic Speech Recognition & Understand-

ing., 2009, pp. 398–403.

[6] C.-A. Chan, C.-T. Chung, Y.-H. Kuo, and L.-S. Lee, “Toward

unsupervised model-based spoken term detection with spoken

queries without annotated data,” in Proc. Int. Conf. Acoustics,

Speech, Signal Process., May 2013, pp. 8550–8554.

[7] S. Soldo, M. Magimai.-Doss, J. Pinto, and H. Bourlard, “Pos-

terior features for template-based ASR,” in Proc. Int. Conf.

Acoustics, Speech, Signal Process., May 2011, pp. 4864–4867.

[8] H. Wang, T. Lee, C.-C. Leung, B. Ma, and H. Li, “Using paral-
lel tokenizers with DTW matrix combination for low-resource

spoken term detection,” in Proc. Int. Conf. Acoustics, Speech,

Signal Process., May 2013, pp. 8545–8549.

[9] Y. Zhang and J. R. Glass, “An inner-product lower-bound esti-

mate for dynamic time warping,” in Proc. Int. Conf. Acoustics,

Speech, Signal Process., 2011, pp. 5660–5663.

[10] Y. Zhang and J. R. Glass, “A piecewise aggregate approxi-
mation lower-bound estimate for posteriorgram-based dynamic

time warping,” in Proc. Interspeech., 2011, pp. 1909–1912.

[11] A. Jansen and B. V. Durme, “Indexing raw acoustic features

for scalable zero resource search,” in Proc. Interspeech, 2012.

[12] G. Mantena and X. Anguera, “Speed improvements to infor-

mation retrieval-based dynamic time warping using heirarchi-

cal k-means clustering,” in Proc. Int. Conf. Acoustics, Speech,

Signal Process., May 2013, pp. 8515–8519.

[13] K. Aoyama, A. Ogawa, T. Hattori, T. Hori, and A. Nakamura,
“Graph index based query-by-example search on a large speech

data set,” in Proc. Int. Conf. Acoustics, Speech, Signal Pro-

cess., May 2013, pp. 8520–8524.

[14] T. J. Hazen, W. Shen, and C. White, “Query-by-example spo-

ken term detection using phonetic posteriorgram templates,” in
Proc. Int. Workshop on Acoustic Speech Recognition & Under-

standing., 2009, pp. 421–426.

[15] K. Aoyama, K. Saito, T. Yamada, and N. Ueda, “Fast similarity

search in small-world networks,” in Complex Networks: Int.

Workshop on Complex Networks, R. Menezes et al., Ed. 2009,

pp. 185–196, Springer.

[16] K. Aoyama, S. Watanabe, H. Sawada, Y. Minami, N. Ueda, and
K. Saito, “Fast similarity search on a large speech data set with

neighborhood graph indexing,” in Proc. Int. Conf. Acoustics,

Speech, Signal Process., March 2010, pp. 5358–5361.

[17] K. Aoyama, K. Saito, H. Sawada, and N. Ueda, “Fast approxi-
mate similarity search based on degree-reduced neighborhood

graphs,” in Proc. ACM SIGKDD Conf. Knowledge Discovery

and Data Mining, 2011, pp. 1055–1063.

[18] J. Glass, T. J. Hazen, L. Hetherington, and C. Wang, “Analysis
and processing of lecture audio data: Preliminary investiga-

tions,” in Proc. HLT-NAACL, 2004, pp. 9–12.

[19] J. W. Jaromczyk and G. T. Toussaint, “Relative neighborhood
graphs and their relatives,” Proc. IEEE, vol. 80, no. 9, pp.

1502–1517, September 1992.

[20] G. Karypis, E.-H. S. Han, and V. Kumar, “Chameleon: Hier-

archical clustering using dynamic modeling,” Computer, vol.
32, no. 8, pp. 68–75, August 1999.

[21] T. B. Sebastian and B. B. Kimia, “Metric-based shape retrieval

in large databases,” in Proc. Int. Conf. Pattern Recognition,

2002, vol. 3, pp. 291–296.

[22] J. Sakagaito and T. Wada, “Nearest first traversing graph for
simultaneous object tracking and recognition,” in Proc. IEEE

Conf. Computer Vision and Pattern Recognition, June 2007,

pp. 1–7.

[23] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zong, “Fast
approximate nearest-neighbor search with k-nearest neighbor

graph,” in Proc. Int. Joint Conf. Artificial Intelligence, 2011,

pp. 1312–1317.

[24] J. Wang and S. Li, “Query-driven iterated neighborhood graph
search for large scale indexing,” in Proc. ACM Multimedia,

October 2012.

[25] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-

world’ networks,” Nature, vol. 393, pp. 440–442, 1998.

[26] J. Kleinberg, “The small-world phenomenon: An algorith-

mic perspective,” in Proc. ACM Symp. Theory of Computing.

SIGACT, May 2000, pp. 163–170.

[27] Ö. Şimşek and D. Jensen, “Decentralized search in networks
using homophily and degree disparity,” in Proc. Int. Joint Conf.

Artificial Intelligence, July 2005, pp. 304–310.

[28] M. Girvan and M. E. J. Newman, “Community structure in

social and biological networks,” Proc. Natl. Acad. Sci., vol.
99, no. 12, pp. 7821–7826, June 11 2002.

[29] M. E. J. Newman, “Fast algorithm for detecting community

structures in networks,” Phys. Rev. E, vol. 69, 066133, 2004.

[30] A. Clauset, M. E. J. Newman, and C. Moore, “Finding com-

munity structure in very large networks,” Phys. Rev. E, vol. 70,
066111, 2004.

[31] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,

“Fast unfolding of communities in large networks,” J. Stat.

Mech., P10008, 2008.

[32] W. Dong, M. Charikar, and K. Li, “Efficient K-nearest neigh-

bor graph construction for generic similarity measures,” in

Proc. Int. Conf. World Wide Web, 2011, pp. 577–586.

7147

