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ABSTRACT 

 

Many keyword search (KWS) systems make “hit/false alarm 

(FA)” decisions based on the lattice-based posterior 

probability, which is incomparable across keywords. 

Therefore, score normalization is essential for a KWS 

system. In this paper, we investigate the integration of two 

novel features, ranking-score and relative-to-max, into a 

discriminative score normalization method. These features 

are extracted by considering all competing hypotheses of a 
putative detection. A metric-based normalization method is 

also applied as a post-processing step to further optimize the 

term-weighted value (TWV) evaluation metric. We report 

empirical improvements over standard baselines using the 

Vietnamese data from IARPA’s Babel program in the NIST 

OpenKWS13 Evaluation setup. 

 

Index Terms— score normalization, spoken term 

detection (STD), keyword spotting, confidence estimation, 

discriminative modeling, under-resourced languages. 

 

1. INTRODUCTION 
 

Recently, more and more data in the form of broadcast 

news, voice mail, lectures and presentation recordings are 

being archived. However, those data are often not 

transcribed, hence cannot be retrieved easily. Hence, 

keyword search (KWS) [1, 2] is an important area of 

research. Different from spoken document retrieval [3] – the 

task to retrieve entire documents of a keyword, KWS aims 

to find all occurrences of a keyword in a corpus.  

Generally, a two-phase approach, namely indexing and 

search, is utilized for a KWS system. Each audio of the 
speech corpus is automatically segmented and then passed 

to a large vocabulary continuous speech recognition 

(LVCSR) system to produce the corresponding word lattice. 

These lattices are then indexed using techniques such as 

weighted finite state transducer (WFST) [4, 5, 6] framework 

or N-gram indexing [7, 8, 9, 10]. In search phase, keywords 

in the textual format are searched on the index to produce a 

list of putative detections.  

For each putative detection, KWS systems will make a 

decision whether it is a hit or a false alarm by comparing the 

score of the detection to a certain threshold. Currently, many 

KWS systems [11, 12, 13, 14] use the posterior probability 

of the keywords computed from the decoded lattices as the 

scores to make decisions. However, it is observed that the 

same threshold results in different term weighted value 

(TWV) performances for different keywords. This is 

because each detection is affected by various characteristics 

such as the cost of miss, the cost of false alarm, query 

length, number of vowels in a specific keyword and context 

consistence of the keyword. Existing strategies such as 

keyword specific threshold and sum-to-one [12, 15] have 
been shown to be effective solutions to this problem. 

Discriminative score normalization [16, 17, 18, 19, 20, 21] 

is another approach which aims to normalize scores through 

discriminative modeling.  

 In this paper, we investigate the integration of two novel 

features, namely ranking-score and relative-to-max, into a 

discriminative score normalization method. By considering 

all competing hypotheses of a putative detection, the two 

novel features are extracted and then combined with other 

features to train a binary classifier. We also propose to apply 

a metric-based normalization as a post-processing step to 

further optimize the TWV evaluation metric.  
 The paper is organized as follows. In section 2, we 

discuss our method in relation to prior work. Next, we 

present discriminative score normalization in section 3. 

Section 4 introduces the two-stage score normalization in 

which a metric-based normalization method is applied after 

discriminative score normalization. Experiments and 

analysis for the NIST OpenKWS13 Vietnamese data are 

described in section 5. Finally, section 6 is the conclusion. 

 

2. RELATION TO PRIOR WORK 

 
Score normalization is essential for many research areas 

such as information retrieval [22] and speaker verification 

[23]. The work presented here is focused on score 

normalization for keyword search task. The aim of our work 

is to estimate normalized scores by taking the characteristics 

of keywords into account to make the normalized scores 

comparable across keywords. 

One score normalization approach transforms raw 

posterior probability to a new score to optimize the 

evaluation metric. By considering the miss and false alarm 

(FA) cost, researchers proposed keyword specific threshold 
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[12] and sum-to-one [15] normalization techniques to 

optimize the TWV metric. Keyword specific threshold 

estimates the specific threshold for each keyword to 

minimize the decision cost. Sum-to-one boosts score of 

putative detections of rare keywords based on the TWV 

characteristic that losing a rare keyword is expensive and 
missing a frequent keyword is cheap. In this paper, we will 

call the above two methods as metric-based normalization 

methods. 

 Another score normalization approach is discriminative 

score normalization which aims to estimate new scores from 

features so that the new scores are more discriminative for 

hit/FA decisions. In this approach, features such as number 

of vowels, posterior probability and context consistence are 

used to train a discriminative classifier such as the Multi-

Layer Perceptron (MLP) [16, 17], Support Vector Machine 

[16, 17, 18] or Conditional Random Field [19, 20]. Research 
shows that the new scores increase correct hit/FA decisions 

over the raw posterior probability and hence lead to better 

performance. Although this approach was referred as 

confidence estimation or discriminative modeling [16, 17, 

19], it is another score normalization approach which aims 

to achieve the implicit normalization through discriminative 

modeling. Therefore, in this paper, we call this approach as 

discriminative score normalization. 

 In this paper, we also use MLP as discriminative score 

normalization method. We further introduce ranking-score 

and relative-to-max as two novel features for the MLP. We 

also propose to apply a metric-based normalization as a 
post-processing step to further optimize the TWV metric. 

 

3. DISCRIMINATIVE SCORE NORMALIZATION 

 

Theoretically, the conventional lattice-based posterior 

probability represents the posterior probability of a keyword 

K in the lattice L given the acoustic observation O. A 

potential drawback of the lattice-based posterior probability 

lies in the fact that the scores of putative detections of all 

keywords are treated the same.  In general, different 

keywords exhibit a high diversity in terms of characteristics 
such as length, number of vowels, etc., implying that the 

scores of putative detections fall into different ranges. 

 A more desirable score for a putative detection might be 

the posterior probability that the detection is correct given 

the detection, i.e., P(hit|d), where hit represents the event 

that detection d is a hit. The new score should not only 

depend on the raw posterior probability but also depend on 

keyword characteristic. This is the motivation to use 

discriminative score normalization as it allows the 

integration of any keyword characteristic into a more 

general framework. In other words, we construct a mapping 

between set of features to the final score 
    S’K,i= f(f0 , f1,...),      (1) 

where S’K,i is the desired score of the ith putative detection of 

keyword K and f0 , f1,...are features such as raw posterior 

probability, average query length and number of vowels. 

 In this paper we choose MLP as a discriminative model. 

The feature set includes two novel features called ranking-

score and relative-to-max as well as some well-known 

features: average query length, raw posterior probability, 

number of vowels. Those features are extracted by 

considering, for each putative detection, all competing 
hypotheses of the detection in the corresponding lattice.  

Ranking-score: Consider a detection d of a single-word 

keyword which is presented as a tuple (Lattice L, start-time, 

duration, posterior probability), we define T(d) as a set of 

arcs in the lattice L that overlap with the mid-point time of 

d.  The ranking-score feature is the rank of posterior 

probability of d compared to the posterior probability of all 

items in T(d). For a keyword K that consists of more than 

one word, K = K1 K2...Kn, we infer the ranking of a 

detection d of this keyword using the following formula: 

 ranking-score(d) =         (ranking-score (Ki)) (2) 
It is clear that at the same posterior probability, detections 

with low ranking-score are more likely to be hits. Thus 

ranking-score can provide more information to determine 

whether a putative detection is a hit or an FA. 

Relative-to-max: Again, for a putative detection d of a 

single-word keyword, let T(d) be the set of arcs in the lattice 

L that overlap with d. The relative-to-max of d is defined as 

the relative score of the detection d compared to the best 

score of items in T(d), i.e, 

Relative-to-max (d) = 
                        

                                    
 (3) 

For a keyword K that consists of more than one word, K = 

K1 K2...Kn, we infer the relative-to-max of a detection d of 

this keyword using the following formula: 

 Relative-to-max (d) =         (relative-to-max (Ki)) (4) 

This information indicates how much the best hypothesis in 

T(d) dominate the detection hypothesis d. The low relative-

to-max score means the detection hypothesis is highly 

dominated by another best hypothesis, which mean it is less 

likely to be a hit even it can have good ranking-score. 
Relative-to-max can provide extra information to ranking-

score and posterior probability to help make correct hit/FA 

decisions, hence it is also a good indicator for our 

discriminative model. 

 

4. TWO-STAGE SCORE NORMALIZATION  

 

The above score normalization methods provide scores from 

a new perspective that potentially leads to a more informed  

"hit/FA" decision. We note that, the final target is to 

optimize the TWV metric. Thus, it is desirable to apply a 
metric-based score normalization method on the results of 

the discriminative score normalization procedure to get the 

final score that optimizes with regards to TWV. With this 

two-stage scheme, we can take advantages of both 

discriminative and metric-based score normalization 

approaches. The two-stage scheme is shown in Figure 1 

below. Two state-of-the-art metric-based score 

normalization methods, keyword specific threshold and 

sum-to-one, can be used in the second step. 
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Fig. 1.The two-stage scheme for score normalization 

 
Keyword specific threshold (KST) [12]: For each keyword 

K, a specific threshold is estimated using the following 

equation to minimize decision cost: 

    θK  
     

          
      (5) 

where T is corpus size, β = 999.9 and NK is number of 

references of the keyword K that can be approximate by  

NK = ∑                               

To allow using global threshold θ for all keywords, an 

exponential transformation is applied on the raw posterior 

probability as in the following equation [24]: 

    
   

   

       

        
      (6) 

Sum-to-one normalization (STO)[15]: Sum-to-one method 

normalizes score to reduce Pmiss of rare keyword as follows: 

      
  

    

∑      
                (7) 

The denominator for rare keyword is small, therefore 

boosting the normalized score for rare keywords. Thus this 

normalization helps to reduce Pmiss for rare keyword. 

 

5. EXPERIMENTS 

 

The keyword search experiments are conducted on the 

Vietnamese conversational telephone speech used in the 

NIST OpenKWS13 Evaluation [2]. The training data 
consists of 80 hours of conversational telephone speech and 

20 hours of scripted telephone speech. The development set 

is 10 hours and the evaluation set is 75 hours. Because NIST 

only released evalpart1 (about 15h) of the whole evaluation 

data, we only conduct evaluation on this part. The 

evaluation keyword set consists of 4065 keywords and 1309 

of those keywords are in the part 1 of the evaluation data.  

 We used the open-source Kaldi toolkit [25] to build our 

LVCSR system. We used 13-dim PLP features, and 

concatenated 9 frames adjacent together to apply LDA, 

MLLT, and fMLLR transforms, which resulted in 40-
dimensions of features to train a deep neural network 

(DNN) acoustic model. The language model is syllable-

based bigram LM with Good Turing Smoothing trained with 

SRILM toolkit [26]. Details of the system implementation 

can be found in [27]1. The final word error rate (WER) of 

our system is 55.6%. 

To evaluate KWS performance, NIST defines the term-

weighted value (TWV) [2] which integrates the miss rate 

and false alarm rate of each query into a single metric and 

then averages over all queries: 

                                                
1 Note that the normalization techniques used in this paper 

are different from that in [27] 

TWV(θ) = 1- 
 

 
∑                                             (8) 

Actual term-weighted value (ATWV) is the TWV of a 

chosen decision threshold, whereas the maximum term-

weighted value (MTWV) is the best TWV found over all the 

possible values of decision thresholds. The ATWV score is 

sensitive to the threshold selection thus might lead to 

uncertainty in comparison between difference experiments. 

When comparing across ATWV’s, it is difficult to know if 

the difference is caused by different systems or by threshold 

selection. Therefore, MTWV is used as evaluation metric. In 

addition to ATWV and MTWV, NIST proposed a detection 
error tradeoff (DET) curve to evaluate the performance of a 

KWS system. DET curves are also used for performance 

evaluation in this paper. 

 In order to get training data for the MLP model, we 

augmented the query list of the development set from 200 

queries to 460 queries and then searched on those queries to 

get a list of putative detections. For each putative detection, 

useful features that are mentioned in section 3 were 

extracted. The true “hit” or “FA” outputs were obtained by 

aligning each detection with the reference transcription. This 

gave us over 40300 examples for the training of the MLP. 
 

5.1. Two novel features for discriminative score normali-

zation 

We compare results of the MLP normalization method 

trained with and without the two new features. We also 

compare the MLP normalization method with traditional 

query length normalization proposed in [15, 28] that 

exponentially transforms score. We denote MLP method 

without the two new features as MLP-baseline, MLP 

method with the two new features as MLP-2 and the query 

length normalization method as QueryLength. The 

experiment results are shown in Fig. 2 and Table 1. The 
MLP-baseline method provides only less than 1% absolute 

improvement compare to the traditional query length 

normalization. This is not surprising, however, as we only 

use three features to train the MLP model. When two novel 

features are integrated into the MLP model, MLP-2 

outperforms MLP-baseline and QueryLength by 1.2% and 

1.8% absolute respectively.  

 
Fig. 2. DET curves for proposed MLP-2 and its baselines 

Features 

set 

Discriminative 

score 

normalization 

Metric-based 

score 

normalization 

Final score 
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Table 1: MTWV comparison for proposed MLP-2 and its 

baselines. 

Score normalization methods MTWV 

QueryLength 0.3122 

MLP-baseline 0.3184 

MLP-2 (proposed) 0.3307 

 

5.2. Two-stage scheme for score normalization 
In this section, we compare the two-stage normalization 

scheme with the case we only use MLP normalization 

method. We also compare the results of our proposed 

method with the standalone keyword specific threshold 

(denoted as KST) and sum-to-one (denoted as STO) 

normalization methods that are applied on raw posterior 

probability. The experiment results are shown in Fig. 3., Fig. 

4.  and Table 2.   

 

Table 2: MTWV Comparison of proposed MLP-2, keyword 

specific threshold (KST), sum-to-one (STO), and 
combinations of score normalization methods. 

Score normalization methods MTWV 

MLP-2 0.3307 

KST 0.3959 

STO 0.3955 

MLP-2  +  STO 0.3967 

MLP-2  +  KST 0.4044 

 

 
Fig. 3. DET curves of score normalization results using 

proposed MLP-2, keyword specific threshold (KST) 

normalization, and their combination (MLP-2 + KST). 

 

From the DET curve in Fig. 3 and Table 2 for keyword 

specific threshold, it is clear to see the considerable 
improvement of MLP-2 + KST compare to both baselines, 

especially MLP-2 alone. Our proposed method outperforms 

MLP-2 and KST by 7.3 % and 0.85% absolute respectively. 

For the case of sum-to-one in Fig. 4, our proposed method 

MLP-2 + STO is at least comparable with STO and still 

outperforms the baseline MLP-2. 

 The experiments results show that our method is better 

than the baseline. The reason is that our method takes 

advantages of both normalization approaches: it considers 

the characteristics of the keywords as well as the 

characteristics of TWV evaluation metric.  

 

 
 

Fig. 4. DET curves of score normalization results using 

proposed MLP-2, sum-to-one (STO) normalization, and 
their combination (MLP-2 + STO). 

 

6. CONCLUSION 

 

We have presented a discriminative score normalization 

method to resolve with the incomparable score problem of 

the keyword search task. Two novel features, ranking-score 

and relative-to-max are integrated into a discriminative 

classifier to estimate more accurate scores. For each putative 

detection, the two features are extracted by considering all 

competing hypotheses of the detection in the corresponding 
lattice. We show empirically that these features help more 

precisely estimating final scores. In this paper, we also 

introduced the two-stage score normalization that uses a 

metric-based normalization method as a post-processing 

step. By using this normalization scheme, we can take 

advantages of both discriminative modeling and metric-

oriented optimization normalization approach. For future 

work, we plan to apply the proposed features and techniques 

to other languages and conditions of limited language 

resources.   
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