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ABSTRACT

In this paper, we propose an adaptive line enhancer based on ne-
gentropy for single-channel noise reduction. Our proposed approach
can be integrated in a speech enhancement system as a preprocessor
to be combined with other noise reduction approaches. The pro-
posed method performs the noise reduction by splitting the noisy
speech components into the deterministic and the stochastic parts
through the minimization of negentropy in an adaptive manner. We
consider the negentropy as a cost function, and we derive a learning
rule via Newton’s method to minimize the negentropy of the error
signal. By the experimental results, we demonstrate that exploiting
the proposed approach can be potentially useful as a preprocessor
for improving the performance of conventional single-channel noise
reduction approaches at low signal-to-noise ratio (SNR) conditions.
Moreover, it is shown that our approach by itself can also enhance
the noisy speech in an adverse noisy environment.

Index Terms— Single-channel noise reduction, speech en-
hancement, adaptive line enhancer, negentropy

1. INTRODUCTION

Single-channel noise reduction algorithms aim to improve both qual-
ity (e.g. speech pleasantness and naturalness) and intelligibility of
noisy speech signals in many speech communication systems. Al-
though single-channel noise reduction approaches may improve the
speech quality, some recent studies (e.g. [1], [2]) show that most
of these algorithms such as spectral subtractive, sub-space, statis-
tical model based and Wiener-type algorithms [3] cannot provide
significant improvements in speech intelligibility. The performance
of these algorithms highly depends on the accurate estimation of the
background noise statistics and the estimation of the a priori signal-
to-noise ratio (SNR). Thus, it is of great interest to design novel
single-channel noise reduction schemes which can improve both the
quality and intelligibility of noisy speech in adverse environments
(involving non-stationary noise and low input SNR conditions).

In this paper, we introduce a new approach for single-channel
noise reduction at low SNR conditions which does not require
knowledge of the noise statistics. Our approach is able to enhance
the noisy speech as a stand-alone method, and moreover it can be
regarded as a preprocessor to be combined with a conventional
single-channel noise reduction system. The proposed approach
incorporates the negentropy [4], [5] in an adaptive line enhancer
(ALE) [6]. As shown in Fig. 1, typically in ALE, a filter is adapted
based on minimizing a cost function of the error (residual) signal
e(n) = x(n) — Z(n) where x(n) is a discrete time domain signal
at the input, and Z(n) is the filtered signal. Traditionally, the mean
square error (MSE) is the criterion which is chosen in ALE as the
cost function to be minimized [7], [8], [9].
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In the work that we present here, the negentropy is exploited
as a cost function of the error signal to split the noisy speech into
the deterministic and the stochastic parts. The deterministic part,
which mainly includes the stationary and periodic components of
noisy speech, appears in the filtered signal while the error signal
contains the stochastic (or fluctuating) part, and it is more random
than the filtered signal. The negentropy is an information-theoretic
criterion which has been widely used as a contrast function for in-
dependent component analysis (ICA) e.g., [4], [S], and [10]. On
the other hand, in novel applications, the negentropy has been con-
sidered as a criterion for measuring the randomness of signals in
the voice-activity detection [11] or as a non-Gaussianity criterion in
beamforming [12]. For example, in [11], it is argued that since the
segments of noisy speech which contain speech are relatively more
structured than the noise-only (or speech-pause) segments, the ne-
gentropy of these frames (i.e., speech-active segments) should be
higher than the negentropy of noise-only frames.

In the proposed approach, the filter coefficients are found
through a learning rule based on Newton’s method to minimize
the negentropy of the error signal in an adaptive manner. The mini-
mization of negentropy implies that the error signal is more random
than the filtered signal. In the experiments, we introduce scenarios
in which our approach can be integrated for single-channel noise
reduction. The evaluation framework is based on instrumental qual-
ity and intelligibility measures. We demonstrate that exploiting the
proposed method can be potentially useful as a preprocessor for
improving the performance of single-channel noise reduction ap-
proaches at low SNR conditions. Furthermore, it is shown that this
approach by itself is able to enhance the noisy speech in an adverse
noisy environment.

x(n) L

Fig. 1. The structure of a typical adaptive line enhancer (ALE).

2. PROPOSED APPROACH

Let s(n) denote a clean speech signal which is degraded by an ad-
ditive background noise £(n) and produces the noisy speech signal
x(n). It is assumed that s(n) and £(n) are statistically independent.
Our aim is to enhance the noisy speech x(n) only based on the ob-
served signal without the estimation of noise power spectral density
(PSD).

The differential entropy is a fundamental information-theoretic
concept for continuous-valued random variables. For a random vec-
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tor x with the probability density f-(.) the differential entropy h is
defined as [13]

h(x) = — / £ () log(f2 (x)) dx. M

In the concept of independent component analysis, the negentropy
was introduced instead of differential entropy for minimization of
mutual information [5], [14]. The negentropy (or the negative nor-
malized entropy) J of a random vector x is defined as [5]

J(%) = h(Xgauss) — h(x), )

where X gquss 1S a Gaussian random vector with the same covariance
matrix as x. The negentropy can be approximated using the cumu-
lants of the probability distribution, however, it has been shown that
the cumulant-based approximations are not robust [5]. For a random
variable u, a robust approximation of its negentropy can be derived
as follows [5], [14]

J(u) < [E{G (W)} — E{G W)}]?, 3)

where G(.) is a non-quadratic function, E {-} denotes the expecta-
tion operator, and v denotes a normally distributed random variable
of zero mean and unit variance. The approximation in (3) is robust
and has a low computational complexity [14].

The negentropy has some interesting properties [5], [14]. Un-
like the differential entropy, the negentropy is invariant for invertible
linear transformations, and it is always positive. The negentropy can
be interpreted as a measure of non-Gaussianity where it is zero for
a normally distributed random variable. The important property of
negentropy which we take into account in our approach is that it can
be regarded as a criterion to measure the amount of structure in the
probability distribution of a random variable. When a random vari-
able has a sparse distribution or is clearly clustered, its distribution
is concentrated on certain values, and hence its negentropy is higher
than the negentropy of a random variable that is unpredictable and
unstructured.

We incorporate the negentropy in an adaptive line enhancer
(ALE) (shown in Fig.1) as the cost function. Given the noisy
speech z(n) at the input of ALE, we minimize the negentropy
to estimate the error signal e(n) such that it mostly contains
the stochastic (random) part of noisy speech xz(n) whereas the
filtered signal #(n) contains the deterministic (periodic) part.
ALE predicts the input signal z(n) as a linear combination of
x(n) = [¢(n —7), ... ,x (n — 7 — L + 1)]" such that the filtered
signal Z(n) is derived as

i(n) = w' (n)x(n), )

where T" denotes the transpose operator, 7 the delay parameter which
is a significant parameter, L the number of samples in each segment
(equal to the number of tap coefficients in the filter), and w(n) =
[wi(n),..., wr(n)]" denotes a vector of filter coefficients. Hence,
the error signal e(n) can be expressed as

e(n) = z(n) — &(n)
: )
=z(n) —w (n)x(n).
Taking into account (3), (4), and (5), we estimate the filter w(n) in
an adaptive manner by minimizing the negentropy of the error signal
as follows

Jow(n) = [2{G (a(n) ~ w'mx(m) } - E{G )],
(6)

where, similarly to (3), G(.) is a non-quadratic function that in our
work is chosen as
1 —au?

Glu) = — = exp(—5

) (N

where a = 1. The cost function Jg(w(n)) is convex (concave-up)
and twice-differentiable with respect to w(n). Hence, we can use
Newton’s method to derive a learning rule for the minimization of
the cost function (6). To obtain the learning rule based on Newton’s
method, we need to compute the first and the second derivatives of
Ja(w(n)) with respect to w(n) which are denoted by Jg(w(n))
and J&(w(n)), respectively. Thus, we consider the following learn-

ing rule,
_Je(w(n))
Mg (w(n)

where p is the learning rate (or the adaptation rate) parameter, and
J&(w(n)) is computed as

w(n+1) + w(n)

(3

Ja(w(n) = —ex(n) E{G (z(n) — w' (m)x(n))}
c=2 (E {G(m(n) - WT(n)x(n))} _E {G(u)}) .

where G’ (.) is the first derivative of G(.) defined in (7) i.e., G’ (u) =

—au

uwexp(=%*). To simplify the expression (9), we assume that the
term c is a constant which does not change the stationary points of
the learning rule although its sign affects the stability of learning
rule. A similar assumption was considered in [5] to derive the ne-
gentropy based adaptive neural algorithms for ICA. Following this
assumption, we derive J¢(w(n)) as

(C)]

Jh(w(n)) = ex"(n)x(n) E {G”(w(n) - wT(n)x(n))} . (10)

where G”'(.) is the second derivative of G(.) ie, G"(u) =
exp(%ﬁ) — au%xp(%“z). Finally, we obtain the following

learning rule by replacing (9), (10) and (5) in (8),
x(n) E{G'(e(n))}
(n)x(n) E{G"(e(n))}’

where the first moments in (11) are estimated by the exponential
smoothing, i.e.,

w(n+1) <—w(n)+,uxT (11)

G'(e(n)) = aG'(e(n —1)) + (1 - a)G'(e(n)), (12)

where 0 < o < 1 is the smoothing factor. Similarly, we estimate
E {G"(e(n))} according to (12).

As we mentioned before, the proposed adaptive filter separates
the observed noisy speech z(n) into the deterministic part which
is included in the filtered signal Z(n) and the stochastic part which
is included in the error signal e(n). Minimization of negentropy
guarantees that e(n) is less structured than Z(n). Depending on the
type of background noise, the target speech may be captured in Z(n)
as the deterministic part or may be captured in e(n) as the stochastic
part. In other words, the separation of target speech from the noisy
signal is performed with a permutation ambiguity. We resolve the
aforementioned permutation problem by computing the kurtosis of
both e(n) and Z(n) and making the decision based on the fact that
speech signals are highly super-Gaussian and generally their kurtosis
is larger than that of the background noise. Thus, either the error
signal or the filtered signal can be selected as the estimated target
speech if its kurtosis is the largest.
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Table 1. Performance of different speech enhancement scenar-
ios (shown in Fig.2) when clean speech is degraded by WGN-
Harmonics at low SNR conditions -15, -10, -5, 0, and 5 dB.

Table 2. Performance of different speech enhancement scenarios
(introduced in Fig. 2) when clean speech is degraded by traffic noise
at low SNR conditions -15, -10, -5, 0, and 5 dB.

Method | Measure -15dB | -10dB | -5dB | 0dB | 5dB Method | Measure -15dB | -10dB | -5dB | 0dB | 5dB
STOI-in 0.63 0.70 0.77 | 0.84 | 0.90 STOI-in 0.41 0.51 0.62 | 0.74 | 0.84
Case | STOI-out | 0.79 0.87 092 | 095 | 0.97 Case 1 STOI-out | 0.40 0.52 0.66 | 0.78 | 0.87
APESQ | 0.61 1.00 1.13 1.26 | 1.32 APESQ | -1.61 -0.09 0.11 | 036 | 0.44
ASSNR 10.4 11.6 12.1 11.8 | 11.0 ASSNR | 2.66 3.70 431 | 4.54 | 432
STOI-out | 0.80 0.88 093 | 095 | 0.97 STOI-out | 0.47 0.57 0.67 | 0.75 | 0.80
Case 2 APESQ | 0.21 0.62 0.79 | 094 | 1.02 Case 2 APESQ | -1.28 0.05 0.17 | 0.15 | 0.10
ASSNR | 7.06 8.93 9.03 | 747 | 2.11 ASSNR | 2.70 3.36 2.95 1.49 | -0.88
STOI-out | 0.84 0.90 094 | 096 | 0.97 STOI-out | 0.46 0.58 0.68 | 0.76 | 0.82
Case 3 APESQ | 0.85 1.24 134 | 145 | 1.48 Case 3 APESQ | -1.29 0.21 040 | 046 | 0.45
ASSNR 11.7 12.6 11.7 | 9.60 | 3.02 ASSNR | 4.90 5.23 441 | 254 | 0.01

However, it is noteworthy that according to our pilot experi-
ments, the target speech is obtained in the error signal (i.e., the
stochastic part) for different types of noise except the white Gaus-
sian noise (WGN). In other words, we do not require making the
decision based on kurtosis since the only exceptional case in which
the target speech is found in the filtered signal (i.e., the deterministic
part) is when the target speech is degraded by WGN.

3. EXPERIMENTAL RESULTS

In this paper, the number of tap coefficients L for the filter is set to
300 (or equivalently the segment length is 18.7 ms for signals sam-
pled at 16 kHz sampling frequency). We set the delay parameter 7
equal to 1 (7 = 1) and the smoothing factor o equal to 0.3 (o = 0.3)
according to our pilot experiments. Later on, the proposed approach
is indicated by "NegALE” in the paper.

The sampling frequency of all signals used in this work is
16 kHz. The clean speech signal has a total duration of 60s taken
from the TIMIT database [15] including two male and two female
speech signals (of four different speakers) where each one has a
duration of 15s. In the experiments, two types of noise signals are
considered. One is a synthetic noise which is a white Gaussian noise
combined with some harmonics at six certain frequencies from 500
Hz to 3kHz in 500 Hz steps (called WGN-Harmonics). The other
one is a real-world noise in a traffic environment involving a lot of
horn sounds (called traffic noise). To simulate low SNR conditions,
we consider input overall SNRs from —15 to 5 dB in 5 dB steps.

Our approach can be used to enhance the noisy speech as a
stand-alone method; furthermore, it can be considered as a prepro-
cessor for a conventional single-channel noise reduction (SCNR)
method. In Fig. 2, we show the usage of a conventional noise reduc-
tion method (indicated by SCNR) as well as two different scenarios
which are introduced to employ our approach (NegALE). In this fig-
ure, Case 1 shows the usage of SCNR for enhancing the noisy speech
x(n) where the estimated target speech is denoted by §(n). For
SCNR, we perform the spectral gain calculation in the frequency do-
main based on the decision-directed approach [16] (with smoothing
factor equal to 0.9) and the minimum mean-square error log-spectral
amplitude estimator (MMSE-LSA) [17]. The noise PSD is derived
by the MMSE based noise power estimator [18] that has a robust per-
formance according to the study in [19]. SCNR was implemented in
a discrete Fourier transform (DFT)-based spectral analysis-synthesis
system using overlapping square-root Hann windows. The window
length as well as the DFT length are 512 samples (32ms) and the
amount of overlap between the frames is 256 samples (16ms).

Case 2 shows the noise reduction only based on the proposed

approach where the estimated target speech and the estimated noise
are denoted by §(n) and £(n), respectively. As we mentioned in
Section 2, the target speech depending on the type of background
noise may be found in the error signal e(n) (i.e., the stochastic part
of noisy speech) or may be in the filtered signal Z(n) (i.e., the deter-
ministic part of noisy speech). Our criterion for choosing the right
part containing the target speech (i.e. resolving the permutation am-
biguity) is based on the kurtosis of signals which in this work is com-
puted by kurtosis(.) — 3 where kurtosis(.) is the built-in function
in MATLAB. However, as we mentioned it before, making the de-
cision based on kurtosis for selecting the error or the filtered signal
as the target speech is not necessarily required when WGN is not
among the noise types which are considered in the experiments. In
our experiments, for example since the target speech is degraded by
either traffic noise or WGN-Harmonics, the target speech is always
captured in the error signal (i.e., §(n) = e(n)) as the stochastic part
of noisy speech and the deterministic part of noise is captured in the
filtered signal (i.e., £(n) = &(n)) as the deterministic part of noisy
speech.

Case 3 illustrates the proposed scenario of employing NegALE
as a preprocessor for SCNR such that the noisy speech z(n) is firstly
processed by NegALE to separate the deterministic and stochastic
parts of noisy speech. In this way, the signal s1(n) containing the
target speech is provided at the input of SCNR for further enhance-
ment. By applying the SCNR to the signal s1(n), the remaining part
of noise can be suppressed to provide the final estimate of the target
speech §(n).

We measure the performance of algorithms with respect to
the speech quality enhancement by using the improvement in the
segmental SNR [3] (indicated by ASSNR) and the improvement
in Perceptual Evaluation of Speech Quality measure (denoted by
APESQ) as implemented in [3]. Furthermore, we evaluate the
performance in terms of the speech intelligibility by means of the
Short-Time Objective Intelligibility (STOI) measure [20]. The ob-
jective intelligibility scores for the unprocessed noisy speech x(n)
and the final processed speech §(n) are indicated by STOILy, and
STOI,ut, respectively.

In the experiments, the suitable adaptation rate p for NegALE is
determined heuristically to separate deterministic noise components
from the noisy speech while preserving speech components in the
stochastic part of noisy speech (i.e., §(n) in Case 2 in Fig. 2). In Ta-
ble 1, we show the results of different speech enhancement scenarios
(introduced in Fig. 2) when the clean (target) speech is degraded by
WGN-Harmonics. We choose the adaptation rate ;4 = 0.0003 small
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enough to separate the periodic part of WGN-Harmonics from the
noisy speech. In this case, the deterministic part of noisy speech
contains the harmonics, and the stochastic part contains the esti-
mated target speech plus WGN. In Fig. 3, the spectrograms of a clean
speech degraded by WGN-Harmonics at —10dB SNR, the noise
estimated by NegALE, the estimated target speech derived by pro-
cessing the noisy speech only with NegALE (i.e., Case 2 in Fig. 2),
the estimated target speech derived by processing noisy speech via
Case 3, and the estimated target speech derived by only employing
the SCNR (i.e., Case 1) are presented for 4 s of signals. In this exper-
iment, the values of kurtosis for the estimated target speech in Case 2
and the estimated noise are 11.69 and 0.616, respectively.

In Table 2, the results of different speech enhancement scenar-
ios (introduced in Fig.2) are presented when the clean speech is
degraded by traffic noise. Here, the most suitable adaptation rate
was found equal to 0.008 which is larger than the adaptation rate for
WGN-Harmonics in the former experiment. The reason is that traf-
fic noise is more non-stationary than WGN-Harmonics, and thus the
adaptation speed needs to increase to capture more components of
noise in the deterministic part of noisy speech. Here, similar to the
previous experiment, by applying NegALE to the noisy speech, the
target speech is derived in the stochastic part.

Case (1)
) R
SN SCNR N
—
Case (2)

— i)

x(n)

e | NegALE
—— >
&(n)
Case (3)
XL) NegALE
&

Fig. 2. Illustration for different scenarios of using the conventional
single-channel noise reduction (SCNR) and the proposed approach
(NegALE) in the experiments.

4. DISCUSSION AND CONCLUSIONS

From the Table 1 and Table 2, one can observe that exploiting the
proposed approach for speech enhancement can be useful at low
SNR conditions when it is used as a preprocessor to be combined
with a conventional noise reduction approach. In the experiment
with WGN-Harmonics (see Table 1 and Fig.2), the proposed strat-
egy in Case 3 showed a better performance than that of Case?2 and
Case 1 in terms of APESQ while preserving the intelligibility in
terms of STOIoyu¢. In fact, employing NegALE was helpful to sep-
arate the harmonics from the noisy speech and preserve the speech
components in the final estimated target speech. At higher SNR val-
ues i.e., 0dB and 5dB, we observe that the performance of Case 2
and Case 3 is lower than that of Case 1 in terms of ASSNR. This
can be due to the attenuation which is introduced by NegALE to the
speech signal’s amplitude where the instrumental measure ASSNR,
is sensitive to it while the other instrumental measures APES(Q and
STOI,.t are not affected by this attenuation.

In the experiment with traffic noise (see Table 2), we observed
that Case 3 provides the best results compared to the other speech
enhancement scenarios in terms of APESQ while preserving the
intelligibility in terms of STOI,y¢. At the SNR of —15dB, we ob-
serve that all methods (Case 1, Case 2 and Case 3) fail to improve

the quality of noisy speech in terms of APESQ. At higher SNR val-
ues i.e., 0dB and 5 dB, the performance of NegALE decreases such
that the worst performance for both Case 2 and Case 3 is derived at
5dB SNR. Thus, it is deduced from the results that our proposed ap-
proach can not perform well for high SNR values (i.e., SNR values
larger than 5dB). The interesting point about our experiment with
traffic noise is that exploiting our proposed adaptive filter (NegALE)
alone in Case 2 could provide a better quality and intelligibility re-
sults (in terms of ST Ol and APESQ) at SNR conditions —15 to
—5 dB than when employing only the conventional noise reduction
algorithm in Case 1.

As the final point, we should note that the adaptation rate pa-
rameter plays an important role in the performance of our proposed
method. In fact, having a prior information about the type of noise
(e.g, if the noise is non-stationary or stationary) can be helpful to
find the optimum adaptation speed. Of course, more investigations
are required in a future work regarding to adjusting the adaptation
rate in an optimal way.

Unprocessed noisy speech
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Fig. 3. The plots (from top to down) show the spectrograms of a
clean speech degraded by WGN-Harmonics at —10dB, the noise
estimated by NegALE, the estimated target speech derived by pro-
cessing the noisy speech with NegALE only (i.e., Case 2 in Fig. 2),
the estimated target speech derived by processing noisy speech via
Case 3, and the estimated target speech derived by employing the
SCNR only (i.e., Case 1).
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