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ABSTRACT

In this paper we propose a novel binaural algorithm to estimate the

power spectral density (PSD) of the background noise at the left and

right ear separately. Inspired by equalization-cancelation considered

in binaural hearing, the target speech is canceled at both left and

right ears by means of the FLMS (fast least-mean square) algorithm.

Assuming the ideal equalization, the output error of the blocking

filter is a biased estimation of noise PSD. The estimated noise PSD is

further corrected by exploiting the estimated left and right interaural

transfer functions and the coherence model of the noise field. In

addition to noise power estimation assessment, the estimated noise

PSD is integrated in a binaural speech enhancement framework in

order to evaluate the overall noise reduction performance.

Index Terms— Binaural speech processing, Noise PSD estima-

tion, Blocking Filter

1. INTRODUCTION AND RELATION TO PRIOR WORK

The performance of voice communication devices remarkably de-

grades in the presence of ambient noise, which is often found in

daily communication scenarios. Therefore, noise reduction algo-

rithms are an important component of modern communication sys-

tem, for instance hearing aids. In many noise reduction algorithms

primary knowledge of noise statistics is a prerequisite for proper tar-

get speech enhancement [1, 2]. Thus, different noise power estima-

tors have been proposed, which can be generally categorized in: 1)

single-channel and 2) dual-channel methods. Even though several

well established single-channel estimators have been introduced thus

far (e.g., [3–6]), the performance of these estimators which use only

one input signal, is fairly limited as they do not exploit the spatial

information, e.g., coherence properties. Furthermore, they cannot

perform well in some cases where the background noise statistics

vary rapidly in time.

In [7], a dual-channel noise power estimator based on cross-

power spectral density of the left and right noisy signals has been

proposed. It has been assumed that the left and right noise sig-

nals are uncorrelated. Later the authors in [8] derived a general-

ized dual-channel noise PSD estimator based on [7] taking the co-

herence model (spherically isotropic) of the noise signal into ac-

count. Recently, a further dual channel estimator based on the work

in [8] has been proposed as a combination of two methods operat-

ing in different frequency bands [9]. In low frequencies a single-

channel noise PSD estimator based on speech presence probability

(SPP) [10] was utilized. The noise power estimator in high frequen-

cies is a dual-channel estimator that exploits the knowledge about

the coherence of noise and speech signals. The coherence of noise

and speech were estimated and updated recursively in speech pres-

ence and noise dominant frames respectively. The combination of

the single-channel estimator in low frequencies and the dual-channel

one in high frequencies was found to be an efficient approach to take

advantage of both classes. Furthermore, it has been proposed to use

algorithms with an intermediate blocking filter, e.g., [11–14], in or-

der to estimate the power spectrum of the interference signal. In

[13, 15], the blind source separation (BSS) has been utilized to sup-

press the target speech and consequently estimate the noise power.

The compensation gain has been derived based on the BSS demixing

matrix to reduce the bias of estimation.

In this paper we propose a binaural noise PSD estimator for bin-

aural hearing devices based on target signal blocking. While there is

a fairly good number of noise power estimators available in the lit-

erature that can be utilized in binaural speech enhancement [16, 17],

a binaural noise PSD estimator that can provide the binaural esti-

mates of noise power at the left and the right ear separately has not

been proposed. In almost all of the algorithms the noise power at

the left and right ear have been assumed to be equal. The proposed

algorithm utilizes the binaural interaural transfer functions, which

are estimated by means of the FLMS algorithm. Depending on the

signal-to-noise ratio, the binaural interaural transfer function block-

ing (ITFB) only partly acts as the desired target blocking filter and

hence the output error is biased with respect to the noise estima-

tion goal. However, in a generalized sense, we can still deduce two

equations for two unknowns of the binaural noise PSDs. Further

considering the prior assumption about the coherence properties of

noise signals, different approaches are utilized to correct the esti-

mated binaural noise PSD. This method does not require any voice

activity detection or speech presence estimation. Moreover, in this

paper different noise estimation errors are considered: 1) noise sig-

nal distortion due to blocking, 2) noise underestimation owing to

uncorrelated noise assumption and 3) noise overestimation due to

the speech leakage as a result of imperfect blocking. The first two

error sources will be discussed and compensated in this work.

The remainder of this paper is organized as follows. In Sec. 2

the binaural signal model is described. The motivation of deriving

binaural noise PSD estimates will be elaborated in Sec. 3. Then, Sec.

4 reviews the proposed binaural noise estimator. The experimental

results and conclusions are presented in Secs. 5 and 6, respectively.

2. BINAURAL SIGNAL MODEL

The left and right binaural microphone signals yi(k) = s(k) ∗
hi(k) + ni(k) = xi(k) + ni(k), i ∈ {r, l}, at sampling time

index k are expressed as a convolution of target speech s(k) with

binaural room impulse responses hi(k) immersed in ambient back-

ground noises ni(k). In the algorithms proposed in this paper, the

vectors yi(k) =
[

yi(k) yi(k − 1) ... yi(k − L+ 1)
]

T of L

successive samples are used, where superscript (.)T denotes vec-

tor transposition. The signals xi(k) and ni(k) are defined in the

same way as yi(k), thus yi(k) = xi(k) + ni(k). It is assumed
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Fig. 1. The binaural noise estimation and reduction system.

that signals ni(k) and xi(k) are zero mean and uncorrelated. The

corresponding frequency-domain signal model is expressed as

Yi(µ, κ) = Xi(µ, κ) +Ni(µ, κ), i ∈ {l, r}, (1)

where κ ∈ Z and µ = 1, ...,M are the frame index and the fre-

quency bin, respectively. The time-varying power spectral densities

(PSDs) of noise and noisy signals are defined as Φnini
(µ, κ) =

E{|Ni(µ, κ)|
2} and Φyiyi(µ, κ) = E{|Yi(µ, κ)|

2} respectively,

where E{.} denotes the statistical expectation operator.

3. MOTIVATION OF THE BINAURAL NOISE PSD

In a real acoustic scenario the left and right noise PSDs are not ex-

actly the same especially when point sources are presented. How-

ever, they are theoretically equal in the left and right ear in ideal

homogeneous spherically isotropic noise fields. In order to clarify

the motivation of separate estimation of left and right PSDs, the log-

arithmic error between the power spectral density of left and right

noise signals is calculated in two frequency bands as

LogErr =
1

MK

M0
∑

µ=µ0

K
∑

κ=1

∣

∣

∣

∣

∣

10 log10

Φ̂Nl(µ,κ)

Φ̂Nr(µ,κ)

∣

∣

∣

∣

∣

. (2)

In the lower band we have µ0 = 0 and M0 = M fc
fs

and in the upper

band µ0 = M fc
fs

+ 1 and M0 = M (fc = 1 kHz and M = 512).

The obtained logarithmic error for different noise types, recursive

and block-wise estimation procedures are illustrated in Fig. 2. The

investigated noise signals are taken from the ETSI database [18].

Moreover, the computer-generated WGN (white Gaussian noise) and

babble noise were produced using the algorithm proposed in [19]

considering the ideal spherically isotropic noise field model. As can

be seen, the left and right recursively estimated noise PSD (α = 0.9)

are not equal even in the computer-generated case. The block-wise

PSD estimation is performed using the Welch method [20] and the

logarithmic error ratio is averaged over frequency bins. The equal

noise PSDs can only be found in stationary computer-generated

WGN noise if a large amount of data is available for block-wise

PSD computation, which is not granted in real scenarios.

4. BINAURAL NOISE ESTIMATION AND REDUCTION

Figure 1 presents the block diagram of the proposed binaural noise

reduction algorithm. It contains two main parts: 1) the blocking via

estimated interaural transfer function Wl and Wr and hence 2) the

binaural noise power estimation and speech enhancement.

As can be seen, the adaptive identification FLMS algorithm for

Wl and Wr operates with respect to a causality delay τa. Due to

the limitation of space, we will not describe it in details here. Basic

information can be found in [21–23]. In this work, the filter order is
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Fig. 2. Comparison of LogErr between left and right target noise

PSDs in high and low frequencies for different noise types

L = 256, the causality delay is τa = 60, the forgetting factor for

signal power smoothing is γ = 0.9 and the step size is µ = 0.1. The

single-channel Wiener filter is used to obtain the enhanced left and

right signals with a Gmin = −20 dB spectral floor via

Gi = max(1−
Φ̂nini

Φyiyi

, Gmin), i ∈ {l, r}. (3)

4.1. Interaural Adaptive Blocking Filter

The interaural transfer function estimation error of the FLMS algo-

rithm is written as

el(k) = yl(k)− ŵ
T
r (k)yr(k) (4a)

er(k) = yr(k)− ŵ
T
l (k)yl(k), (4b)

where ŵi is the time domain representation of estimated filter Ŵi.

The FLMS was implemented in the frequency domain and the es-

timated filter Ŵi is adaptively controlled to minimize the mean-

squared-error signals [21, 7.23]. Assuming perfect interaural trans-

fer function estimation in noise-free conditions and therefore ideal

equalization, the target microphone signal will be canceled such that:

el(k)=xl(k − τa)+nl(k − τa)−ŵ
T
r (k)xr(k)−ŵ

T
r (k)nr(k)

≈nl(k −τa)−ŵ
T
r (k)nr(k) (5a)

er(k)=xr(k − τa)+ nr(k − τa)−ŵ
T
l (k)xl(k)−ŵ

T
l (k)nl(k)

≈nr(k − τa)−ŵ
T
l (k)nl(k), (5b)

By computing the PSD of (5), a system of equations including the

left and right noise PSD can be obtained. As was previously men-

tioned, the output of blocking filtering can be considered as a biased

estimation of the noise PSD, i.e., Φn̂in̂i
= Φeiei :

Φelel = Φnlnl
+

∣

∣

∣
Ŵr

∣

∣

∣

2

Φnrnr
− 2Re{ej

2π

M
µτaŴrΦnlnr

} (6a)

Φerer = Φnrnr
+

∣

∣

∣
Ŵl

∣

∣

∣

2

Φnlnl
− 2Re{ej

2π

M
µτaŴlΦnlnr

} (6b)

where Φeiei is estimated using the first-order recursive equation:

Φ̂eiei(µ, κ) = αΦ̂eiei(µ, κ− 1) + (1− α) |Ei(µ, κ)|
2 . (7)

and Ei(µ, κ) is the STFT (Short-time Fourier transform) of the out-

put error of the adaptive filter as in (5). The power spectral density

of the left and the right noise signals, Φ̂nlnl
and Φ̂nrnr

, are derived

by solving the simultaneous equations in (6) and, consequently, the

noise signal distortion due to blocking will be corrected. In this pro-

cess, two different coherence models are investigated: 1) an uncor-

related noise field, and 2) ideal homogeneous spherically isotropic

(diffuse) noise. For sake of clarity, the frame index κ and frequency

bin µ will be omitted hereafter.
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4.2. Uncorrelated Noise Assumption

Assuming uncorrelated noises in the left and right microphone sig-

nals, which is a reasonable assumption for a diffuse noise field above

a cut-off frequency fc, Φnlnr
is equal to zero. Therefore, (6) will be

a system of linear equations. By solving the equations, the PSD of

the left and the right noise signal can be derived as

Φ̂nlnl
=

Φ̂elel −
∣

∣

∣
Ŵr

∣

∣

∣

2

Φ̂erer

1−
∣

∣

∣
Ŵl

∣

∣

∣

2 ∣
∣

∣
Ŵr

∣

∣

∣

2 (8)

Φ̂nrnr
=

Φ̂erer −
∣

∣

∣Ŵl

∣

∣

∣

2

Φ̂elel

1−
∣

∣

∣
Ŵl

∣

∣

∣

2 ∣
∣

∣
Ŵr

∣

∣

∣

2 .

The important point which should be mentioned here is the ill-

conditioned case that might occur. In very high SNR conditions,

where the FLMS performs ideally well, the estimated left and right

interaural transfer functions are inverses of each other and thus
∣

∣

∣
ŴlŴr

∣

∣

∣
≈ 1. It has been observed that in very high SNR the

denominator in (8) drops to about −25 dB. However, since the al-

gorithm is proposed for noise reduction where the highest SNRs are

not the main concern, the above mentioned problem will not affect

the performance of the algorithm in terms of noise PSD estimation

error. Nevertheless, in order to avoid getting negative value and

a division by small values, the absolute values of numerator and

denominator in (8) are limited to 0 and 0.01 respectively.

Unfortunately, the uncorrelated noise assumption results in un-

derestimation of noise PSDs especially in low frequencies where the

noise components are always correlated. Therefore, the estimated

PSD should be compensated at low frequencies. This will be ad-

dressed in the following.

4.3. Low-frequency Compensation (Diffuse Model)

In order to overcome the underestimation of noise power at low fre-

quencies, the uncorrelated noise signal assumption must be modi-

fied. Since several practical noise situations can be reasonably mod-

eled as a diffuse noise field, we employ the diffuse noise assumption

for the considered noise signals. In this case the coherence of the

noise signals is given by [24]

Γnlnr
(µ) = sinc

(

2µfsd

Mc

)

, (9)

where c = 340 m/s is the sound velocity and d = 0.17m is the

distance between microphones.

Moreover, it has been observed that the assumptions of equal

noise PSDs at two microphones are more plausible at low frequen-

cies than at high frequencies, see for instance Fig. 2. Therefore,

assuming equal noise PSD Φnlnl
= Φnrnr

at two microphones in

equation (6) helps to simplify the linear equation. Consequently,

Φnlnr
can be expressed based on the left and right noise PSD and

the diffuse field coherence function, i.e., Φnlnr
= Γnlnr

Φnlnl
=

Γnlnr
Φnrnr

. Therefore, the PSD can be obtained as

Φ̂nlnl
=

Φ̂elel

1 +
∣

∣

∣
Ŵl

∣

∣

∣

2

− 2Re{ej
2π

M
µτaŴlΓnlnr

}
(10)

Φ̂nrnr
=

Φ̂erer

1 +
∣

∣

∣Ŵr

∣

∣

∣

2

− 2Re{ej
2π

M
µτaŴrΓnlnr

}
.

5. EXPERIMENTAL RESULTS

In order to comprehensively evaluate the proposed algorithm, we

compared the proposed binaural algorithm with two dual-channel es-

timators and a single-channel one: the cross-power-spectral-density

method (CPSD) [7], the improved CPSD method (ImCPSD) [16]

and the single-channel SPP-based method (SC-SPP) [10]. Our

method that directly relies on the blocking-error of the interaural-

transfer-function (i.e., without bias-correction) is termed ITFBo.

The bias-corrected blocking method employing the diffuse noise

model assumption (10) is given the acronym ITFBd. The combina-

tion of ITFBd in low frequencies and the low-coherence-based noise

PSD according to (8) in high frequencies is referred to as ITFBc.

In addition, the unprocessed signal and the enhanced signal using a

reference noise PSD are termed as Unprocessed and Ref.

5.1. Experimental Setup

The experiments have been conducted using the measured binau-

ral meeting room impulse response (T60 = 210 ms) considering

the head shadowing effect, taken from the Aachen room impulse

response database [25]. As we do not consider explicitly the dere-

verberation task in this work, the BRIRs (binaural room impulse re-

sponses) have been cut off based on 70% of total energy in order to

eliminate long reverberation tails. The binaural microphone outputs

are generated by convolving the source signal with the BRIRs. The

target source signal was a concatenation of five sentences taken from

the TIMIT database [26], leading to a total of 60 s of data. In terms

of the noise signal, the binaural babble noise generated by the algo-

rithm proposed in [19] and the kindergarten and mensa noise from

ETSI database [18] were used.

5.2. Algorithms Parameters

Throughout the experiments the considered signals, sampled at

fs = 16 kHz, are segmented into overlapping frames of length L′.

The windowed frames (using a square-root Hanning window) are

then transformed into the frequency domain via a discrete short-time

Fourier transform (STFT) of length M with a 50% overlap and

L′ = M = 2L = 512. In order to make the comparison con-

sistent, the smoothing factor for estimating (cross-) power spectral

densities is set to the same fixed value (α = 0.8) in all algo-

rithms. The same error signal, i.e., (4a) was utilized to implement

ImCPSD [16, 53− 54]. It has been realized that the phase compen-

sation, as was introduced in (6), should be also taken into account in

ImCPSD. Therefore, the ImCPSD was implemented considering the

ej
2π

M
µτa term in corresponding equations. Moreover, the same co-

herence model as described in (9) were used in the implementation

of ImCPSD.

5.3. Evaluation

The performance of the algorithm has been evaluated in terms of

speech enhancement and noise PSD estimation separately. The ob-

jective evaluation results have been averaged over all noise types.

We compared the estimated noise PSD with a reference PSD in terms

of LogErr defined as follows

LogErrtotal =
1

2MK

∑

i=l,r

M
∑

µ=1

K
∑

κ=1

∣

∣

∣

∣

∣

10 log10

Φnini
(µ, κ)

Φ̂nini
(µ, κ)

∣

∣

∣

∣

∣

. (11)

The reference noise PSD is estimated similar to (7) and as mentioned

before, the smoothing factor α was set to 0.8. The evaluation is per-

formed when the transient phase of the adaptive FLMS algorithm
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Fig. 3. Comparison of reference noise PSD and estimated PSD of different algorithms a) SNR = −10 dB and b) SNR = 10 dB
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Fig. 4. Comparison in terms of (a) LogErr , (b) ∆SegSNR, and (c) PESQ for different algorithms averaged over several noise types

has finished. The segmental SNR [2] and the perceptual evaluation

of speech quality (PESQ) [27] were used to assess the overall speech

enhancement performance of the algorithm. The evaluation mea-

sures are averaged over both ears.

The spectral noise estimation quality comparing the ImCPSD,

SC-SPP and ITFBd algorithm at +10 dB and −10 dB SNR is given

in Fig. 3. It can be seen from Fig. 3(a) that the ITFBd can provide a

very good estimate of the reference noise signal at −10 dB. While in

this case the ITFBd outperforms the other algorithms, it suffers from

an slightly overestimation in the +10 dB SNR case, i.e., Fig. 3(b).

Figure 4(a) shows the total estimation error for each noise PSD

estimator at different input SNR. The proposed ITFB algorithms

perform best up to 5 dB SNR. In particular the estimation error is

considerably decreased by applying the correction according to (8)

and (10), i.e., ITFBd and ITFBc in comparison to ITFBo baseline.

The ITFB performances are decreased at +10 dB due to increasing

speech leakage through the blocking stage. In contrast to the pro-

posed algorithm, the estimation error of the other algorithms espe-

cially CS-SPP is high in most of the cases and flat over input SNRs.

The result of segmental SNR improvement for different input

SNR is illustrated in Fig. 4(b). The proposed algorithm outperforms

all other investigated algorithms. Since the uncorrelated noise as-

sumption is not valid for the investigated noise signals, the basic

CPSD method fails to obtain a good segmental SNR improvement.

Figure 4(c) shows the PESQ score obtained by the algorithms.

It can be clearly seen that all investigated algorithms improve the

speech quality in terms of predicted PESQ score. The proposed

ITFBd and ITFBc are slightly superior to the other algorithms. In

all investigated algorithms, PESQ improves as the input SNR is in-

creased. Comparing Fig. 4(a), 4(b) and 4(c) shows that the inves-

tigated algorithms were ranked differently in different measures. It

can be seen that the lowest noise power estimation error does not

necessarily guarantee significantly better quality of the enhanced

speech in terms of PESQ. While PESQ was not originally intro-

duced for evaluating noise reduction algorithms, our informal lis-

tening confirms the PESQ result.

6. CONCLUSION

We proposed a binaural noise PSD estimation algorithm for binau-

ral signal processing. The proposed algorithm is based on blocking

filtering that uses the estimated interaural transfer functions. The

interaural transfer functions were estimated adaptively by means of

the FLMS algorithm. The direct output of the blocking stage was

considered as a biased estimate of the noise signal. The biased

noise PSD was further corrected assuming two different coherence

models. The inherent properties of the FLMS algorithm makes the

blocking filter capable of suppressing the target speech signal at

high SNRs and restoring the individual noise signal of left and right

ear properly at low SNRs. The quality of the noise estimator then

turns into consistent speech improvement results, but it has been also

found that the noise estimation performance and the speech enhance-

ment quality are not one-to-one related. Furthermore, we still find a

significant gap between the best performing algorithm and the refer-

ence condition, which indicates a need for further improvements of

noise PSD estimation.
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