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ABSTRACT

A new filter design based on joint diagonalization of the clean

speech and noise covariance matrices is proposed. First, an

estimate of the noise is found by filtering the observed signal.

The filter for this is generated by a weighted sum of the eigen-

vectors from the joint diagonalization. Second, an estimate of

the desired signal is found by subtraction of the noise esti-

mate from the observed signal. The filter can be designed to

obtain a desired trade-off between noise reduction and signal

distortion, depending on the number of eigenvectors included

in the filter design. This is explored through simulations using

a speech signal corrupted by car noise, and the results confirm

that the output signal-to-noise ratio and speech distortion in-

dex both increase when more eigenvectors are included in the

filter design.

Index Terms— Noise reduction, speech enhancement,

single channel, time-domain filtering, joint diagonalization.

1. INTRODUCTION

Noise reduction is known to be a very difficult problem in

speech applications and has been studied for more than five

decades. More than ever, good noise reduction algorithms

are required with the revolution of electronic communi-

cations. The methods used so far for solving the task of

noise reduction can be categorized in three major groups:

spectral-subtraction, subspace, and statistical-model-based

methods [1]. The first group of methods work by subtracting

the spectrum of the noise from the spectrum of the noisy

signal (see, e.g, [2–4]). They are some of the first methods

used, but one of their major drawbacks is that they introduce

musical noise in the reconstructed signal, which might be

even worse for the listener than the original noise. The sub-

space methods divide the noisy signal into two subspaces,

one containing the desired signal and noise and one contain-

ing only noise, based on, for example, the singular value

decomposition of the covariance matrix of the noisy signal

(see, e.g., [5–7]). The statistical-model-based methods use

the statistics of the signal to design suitable filters for noise
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reduction, sometimes based on models of the desired sig-

nal with parameters that have to be estimated beforehand.

Traditionally, subspace methods and statistical-model-based

methods have been seen as separate methodologies, although

attempts to bridge the gap have been made in, for exam-

ple, [8] where finite impulse response filters are made based

on the singular value decomposition of a Hankel matrix of

the signal.

One of the milestones in the statistical-model-based meth-

ods was the introduction of the Wiener filter in speech pro-

cessing [1, 9], which was later also derived in a subspace-

based framework [10]. The design of the Wiener filter is de-

pendent on the covariance matrix of the observed signal as

well as an estimate of the noise statistics. Much work has

been done in order to make good estimates of the noise. In

[11–13], algorithms are presented which are capable of track-

ing the noise statistics even during voice activity. However,

the algorithm still suffers from a large tracking delay, which

is minimized using a Bayesian method for noise estimation

in [14]. Even though good estimates of the noise can now be

obtained, the Wiener filter still introduces a large amount of

signal distortion, which was shown in [15] to be an important

factor for the intelligibility of the enhanced speech.

Alternatively, a model of the signal can be assumed, and

thereby filtering with less distortion can be obtained, for ex-

ample, by use of the Capon filter [16] or the linearly con-

strained minimum variance (LCMV) filter [17], applied to

speech enhancement in [18, 19]. In principle, the Capon and

LCMV filters are distortionless, but this feature depends on

correctly estimated model parameters and the validity of the

assumed model. When the covariance matrices and model

parameters have been estimated, it is not possible to change

the Wiener, Capon and LCMV filters in order to trade noise

reduction for less speech distortion or vice versa. In relation

to speech intelligibily, a low degree of signal distortion might

be the most important factor, but dependent on the applica-

tion, noise reduction might be more important. Therefore, a

filter designed according to the specific need of noise reduc-

tion relative to signal distortion is convenient and, hence, one

such approach is presented in this paper.

The proposed filter design belongs to the group of stati-

stical-model-based filters, but with its starting point in the

ideas behind the subspace methods. The idea is to perform a
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joint diagonalization of the speech and noise covariance ma-

trices and use the eigenvectors corresponding to the least sig-

nificant eigenvectors to build a filter. The number of eigen-

vectors used in this process determines the amount of noise

reduction but also the distortion of the signal. The noise re-

duction can, therefore, be exchanged for less signal distor-

tion, which makes it a very flexible filter that can be designed

to meet the specific need of the user. Since both signal and

noise covariance matrices are used, the method is also depen-

dent on the noise statistics being properly estimated using, for

example, one of the aforementioned methods.

In Section 2, we introduce the signal model used and the

basic theory behind the filter design. This is used in Section

3 to deduce the filter. In Section 4, the effect of the number

of eigenvectors used are illustrated through simulations with a

speech signal and in Section 5 the presented method is related

to former work.

2. FUNDAMENTALS

The problem of speech enhancement considered in this work,

which is sometimes also referred to as noise reduction, is

that of recovering the desired signal, x(k), with k being the

discrete-time index, from noisy observations [1, 20, 21]:

y(k) = x(k) + v(k), (1)

where v(k) is the additive noise, which is here unwanted and

assumed to be uncorrelated with x(k). Moreover, all signals

are considered to be real, zero mean, and stationary.

The signal model given in (1) can be put into a vector

form by considering the L most recent successive time sam-

ples of the noisy signal, i.e., y(k) = x(k) + v(k), where

y(k) = [y(k) y(k−1) · · · y(k−L+1)]T is a vector of length

L, the superscript (·)T denotes matrix/vector transpose, and

x(k) and v(k) are defined similarly to y(k). Since x(k) and

v(k) are uncorrelated by assumption, the covariance matrix

(of size L× L) of the noisy signal can be written as

Ry = E
{
y(k)yT (k)

}
= Rx +Rv, (2)

where E{·} denotes mathematical expectation, and Rx =
E
{
x(k)xT (k)

}
and Rv = E

{
v(k)vT (k)

}
are the covari-

ance matrices of x(k) and v(k), respectively. The noise co-

variance matrix, Rv, is assumed to be full rank, i.e., equal to

L, whereas the speech covariance matrix, Rx, can either be

rank deficient or full rank.

The objective, considered herein, is then to estimate the

desired signal sample, x(k), from the observation vector,

y(k). This should be done in such a way that the noise is

reduced as much as possible with little or no distortion of the

desired signal. The proposed filtering method takes advan-

tage of the joint diagonalization technique [22], where the

symmetric, positive definite matrix Rv and the symmetric

matrix Rx can be jointly diagonalized as follows:

BTRxB = Λ, and BTRvB = IL, (3)

where B is a full-rank, square matrix (of size L × L), Λ is

a diagonal matrix whose elements are real and nonnegative,

and IL is the L × L identity matrix. Furthermore, Λ and B

are the eigenvalue and eigenvector matrices, respectively, of

R−1
v

Rx, i.e., R−1
v

RxB = BΛ. Since Rv is positive definite

and Rx is at least positive semidefinite, the eigenvalues of

R−1
v

Rx are non-negative and can be ordered as λ1 ≥ λ2 ≥
· · · ≥ λL ≥ 0. The corresponding eigenvectors are denoted

by b1,b2, . . . ,bL. Due to the assumption in (2), the noisy

signal covariance matrix can be diagonalized as BTRyB =
Λ+ IL.

3. NOISE REDUCTION FILTERING

The idea is to design a filter from the eigenvectors correspond-

ing to the least significant eigenvalues of R−1
v

Rx. The filter

will, thereby, pass a large part of the noise whereas most of the

desired signal is blocked, and the output from the filter can,

therefore, be seen as an estimate of the noise. The estimate of

the desired signal, x̂(k), is then obtained by subtraction of the

filter output, z(k), from the noisy observation, y(k).

First, we apply the filter h = [h0 h1 · · · hL−1]
T

of length

L to the noisy observation vector, y(k), to get the filter output:

z(k) = hTx(k) + hTv(k). (4)

We then choose h =
∑L

i=P+1
βibi, where βi, i = P +

1, . . . , L, are arbitrary real numbers. Now, we estimate the

desired signal as

x̂(k) = y(k)− z(k) (5)

= x(k)−
L∑

i=P+1

βib
T
i x(k) + v(k)−

L∑

i=P+1

βib
T
i v(k).

By minimizing the power of the residual noise,
[
v(k) −

∑L

i=P+1
βib

T
i v(k)

]2
, or, alternatively, the power of the

speech distortion,
[
x(k) −

∑L

i=P+1
βib

T
i x(k)

]2
, we find

that

βi = iTLRvbi =
1

λi

iTLRxbi. (6)

Substituting (6) into (5), we obtain

x̂(k) = x(k)−
L∑

i=P+1

1

λi

iTLRxbib
T
i x(k)

+ v(k)−
L∑

i=P+1

iTLRvbib
T
i v(k). (7)

The variance of x̂(k), found by using the relations in (3), is

σ2
x̂ = σ2

x −
L∑

i=P+1

1

λi

(
iTLRxbi

)2

+σ2
v −

L∑

i=P+1

(
iTLRvbi

)2
, (8)
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where σ2
x and σ2

v are the variances of the desired signal and

noise before filtering.

The performance of the filters can be evaluated by means

of the output signal-to-noise ratio (oSNR) and the speech dis-

tortion index, υsd [21]:

oSNR =
σ2
x,nr

σ2
v,nr

=
σ2
x −

∑L

i=P+1
1

λi

(
iTLRxbi

)2

σ2
v −

∑L

i=P+1

(
iTLRvbi

)2 , (9)

where σ2
x,nr and σ2

v,nr are the variances after noise reduction

of the desired signal and noise, and

υsd =
E{[hTx(k)]2}

E{x2(k)}
=

1

σ2
x

L∑

i=P+1

1

λi

(
iTLRxbi

)2
. (10)

The smaller P is, the more noise reduction is obtained, but

in the same instant the distortion of the desired signal is in-

creased. The choice of the value of P will, therefore, be a

compromise between noise reduction and signal distortion.

4. SIMULATIONS

In this section, the filter design is evaluated through simula-

tions, and the influence of the choice of P on the output SNR

and the speech distortion index is investigated.

The filter is tested on a known speech signal with car noise

from the AURORA database [23] added to give an average in-

put SNR (iSNR) of 10 dB. The covariance matrices of clean

speech and noise are estimated from segments of 230 sam-

ples from the desired signal and noise vectors, respectively,

and they are updated for each new sample. The speech signal

used in the present simulations is a female speaker uttering the

sentence “Why were you away a year Roy?” sampled with a

frequency of 8000 Hz. The frequency response of a filter is

plotted in Fig. 1 along with the spectrum of the corresponding

desired signal. The filter is designed based on L = 70, and

P = 20. The filter has zeros located close to the unit circle

at the frequencies of the major components of the desired sig-

nal, and, therefore, it will primarily pass the noise, which is

also the purpose of the filter. Based on the same settings, the

speech signal is estimated, and a small part is shown in Fig.

2 where the original speech signal and the noisy observation

are plotted as well.

The noise removed from the noisy observation is depen-

dent on the value of P . If a smaller value of P is chosen,

more noise can be removed, but, simultaneously, the signal

will be more distorted. The influence of the value of P on the

output SNR and speech distortion index is depicted in Figs.

3a and 3b. The filter length in this case is L = 110. For

comparison, the performance of the Wiener filter (hw) and

three subspace filters from [7] (hls, hmv, hmls) are plotted as

well. The filters from [7] are based on a decomposition of

the Hankel matrix of the signal. With a segment length of

230, we construct a Hankel matrix of the observed signal of
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Fig. 1: Spectrum of clean speech vector, |X(f)|, and fre-

quency response of the corresponding filter, |H(f)|. The

iSNR is 10 dB.
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Fig. 2: Desired signal, x(k), noisy observation, y(k), and

estimated signal, x̂(k). The iSNR is 10 dB.

size 151 by 80, whereas the Hankel matrix of the noise is re-

placed by the Cholesky factorization of the noise covariance

matrix, as also proposed in [7]. The rank (according to P )

is varied from 1 to 71, since restrictions in the method lim-

its the range of the chosen rank. Using the proposed filter,

both output SNR and speech distortion index are decreasing

with P , as was depicted in Section 3. Therefore, the filter can

be designed according to the need for a high output SNR or

a low speech distortion, which makes the filter very flexible.

This is also the case for the filters proposed in [7], but here

the range of possible combinations of output SNR and speech

distortion is smaller. Given P = 1 the proposed filter has an

extra gain in SNR of approximately 3 dB relative to the filters

in [7], whereas the speech distortion is comparable. At the

other extreme it is possible to lower the speech distortion by

approximately 20 dB keeping the output SNR comparable to

hls. The Wiener filter is independent of the value of P which

leaves no possibility for a trade-off between output SNR and

signal distortion.

The effect of choosing different values of P is shown in

Figs. 4a-4d. Figs. 4a and 4b show the spectrograms of the

clean speech signal and the speech signal added noise, re-

spectively, whereas Figs. 4c and 4d show the spectrograms of

the reconstructed speech signal with P = 10 and P = 100.

Using P = 10, much noise has been removed, when compar-

ing to the noisy speech signal from Fig. 4b, but a high degree

of signal distortion has been introduced as well, which can be

seen especially in the left and lower right part of the spectro-
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Fig. 3: (a) Output SNR and (b) speech distortion index as a

function of P for a speech signal with full rank covariance

matrix.

grams when comparing to Fig. 4a. Using P = 100 both noise

reduction and signal distortion are not as prominent as when

P = 10. The speech signal in the aforementioned areas of

high signal distortion in Fig. 4c is much more well preserved

in Fig. 4d, but, as is seen in the background of the figure, the

price is a higher noise level.

5. DISCUSSION

A novel subspace-based filter was designed by use of the joint

diagonalization of covariance matrices of desired signal and

noise. The speech distortion and gain in SNR are dependent

on the low rank approximation of the signal made in the filter

design through the choice of P . Related methods are pre-

sented in [6–8]. Since the proposed method uses the joint di-

agonalization instead of the singular value decomposition, it

can cope with both white and colored noise, therefore, there

is no need for preprossesing in the case of colored noise as

in [6]. Compared to [7, 8], the enhancement problem is here

stated and solved as a linear filtering problem, and, compared

to [7], the proposed filter has a larger interval for the choice of

the rank, and was found to have a broader range of flexibility

for the trade-off between output SNR and speech distortion

index in the case of speech in car noise. It should be noted

that while [10] also uses the joint diagonalization it is only as

a computational tool since the resulting filter is the traditional

Wiener filter.
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Fig. 4: Spectrograms of (a) the original and (b) noisy speech

signals and the reconstructed speech signals with (c) P = 10
and (d) P = 100.
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