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ABSTRACT

Speech enhancement based on statistical models has shown
good performance, but the performance degrades when envi-
ronment noise is highly non-stationary due to the stationary
assumption. On the contrary, the template-based enhance-
ment methods are more robust to non-stationary noise, but
these are heavily dependent on a priori information present
in training data. In order to get over both of the shortcom-
ings, we propose a novel speech enhancement method which
combines the statistical model-based enhancement scheme
with the template-based enhancement. To reduce a depen-
dency on a priori information, the speech and noise bases are
updated simultaneously using the estimated speech presence
probability, which is obtained from statistical model-based
enhancement. Experimental results showed that the proposed
method outperformed not only the statistical model-based
and non-negative matrix factorization (NMF) approaches,
but also their combination implemented with existing bases
update rule in various kinds of noise.

Index Terms— Statistical model-based enhancement,
non-negative matrix factorization, on-line update of bases.

1. INTRODUCTION

Speech enhancement has been extensively studied in the
last few decades, and various approaches have been pro-
posed. Single channel speech enhancement techniques can
be broadly classified into the statistical model-based and
template-based approaches [1]-[9]. In the statistical model
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based approach, speech and noise are modelled with sep-
arate parametric distributions for which each parameter is
estimated from the input signal [1]-[3]. One of the important
advantages of the statistical model-based techniques is that
the models do not need to be trained a priori. However, since
the statistical models are made based on the stationarity as-
sumption of speech and noise, the performance deteriorates
when the environment noise is highly non-stationary.

On the other hand, the template-based techniques, unlike
the statistical model-based methods, need the a priori infor-
mation of speech or noise [4]-[6]. A priori information can
be statistics obtained from a speech or noise corpus or typical
patterns [4], [5]. These approaches are more robust to non-
stationary environments, since there is no strict assumption
on the nature of the noise in contrast to the statistical model-
based methods. However, if the noise is far different from the
trained noise model, the performance degrades severely [6].
Therefore, in order to show good performance they require a
sufficiently large and rich training data set of various noise
environments.

A number of methods have been proposed to combine the
aforementioned two techniques to attain better performance.
A template-based method estimate the speech magnitude
spectrum in [4], while it is applied to obtain the noise power
spectral density (PSD) in [7]. These two methods compute
Wiener filter type gain functions using the PSDs derived
from the template-based approaches. In contrast, [8] applies
a template-based algorithm at the output of a Wiener filter.
This method takes advantage of both the statistical model-
based and template-based approaches, but the Wiener filter
output may not be modelled well without any bases update.
In [9], non-negative matrix factorization (NMF)-based en-
hancement is combined with voice activity detection (VAD)
which is obtained by statistical models, but the performance
degrades if the trained noise model is different from the actual
noise environment.

In this paper, a cascaded structure that combines the
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Fig. 1. Block diagram of the proposed speech enhancement
method

statistical model-based enhancement and template-based ap-
proaches along with simultaneous update of speech and noise
bases. The bases are updated using the speech presence
probability (SPP), and so the proposed method can deal with
the speech and noise patterns which were not included in
the training database well. Experimental results showed that
the proposed algorithm outperformed not only the statistical
model-based and NMF-based methods but also the combined
approach with conventional bases update rule.

2. PROPOSED SPEECH ENHANCEMENT METHOD
WITH ON-LINE BASES UPDATE

In this paper, we propose a cascaded structure for speech
enhancement of which the first stage is a statistical model-
based enhancement while the second stage consists of NMF-
based noise reduction with an on-line update of both speech
and noise bases. The overall block diagram is illustrated
in Figure1. The first stage performs statistical model-based
enhancement (SE), which produces pre-enhanced signal and
SPP for the second stage and bases update module. The sec-
ond stage implements an NMF-based enhancement module
where the minimum mean square error-log spectral amplitude
(MMSE-LSA) estimator [10] is adopted for which the signal-
to-noise-ratio (SNR)-related parameters are estimated by the
NMF module. In our approach, both the speech and noise
bases are updated with the help of SPP to deal with noise
unseen during training and to correct the SE output which is
not well-covered by the original bases.

2.1. NMF-based enhancement and MMSE-LSA gain
function

The second stage of enhancement adopts NMF analysis based
on the algorithm presented in [11], [12] with Kullback-
Leibler divergence as the distance metric. A data set V ∈
RM×N is reconstructed by the product of basis matrix
W∈ RM×r and the encoding matrix H∈ Rr×N (V ≈
WH), where M and N respectively denote the number of
frequency bins and time frames, and r is the number of
bases. We can consider that W consists of speech bases

Ws∈ RM×rs and noise bases Wn∈ RM×rn , i.e., W = [Ws

Wn]∈ RM×(rs+rn), where rs and rn indicate the numbers
of corresponding bases. To apply the NMF framework to
an audio spectrum, V (t) which is the t-th frame of input,
is constructed as V (t) = |Y ′(t)| where | · | means taking
element-wise magnitude, and Y ′(t)∈ CM×1 is SE output
spectrum while Y (t)∈ CM×1 denote the input spectrum.
Since Y ′(t) would have better SNR, the input to the second
stage of enhancement is SE output.

LetWs(t) andWn(t) denote the updated speech and noise
base which will be used to analyze the t-th frame of pre-
enhanced signal, i.e., W (t) = [Ws(t) Wn(t)]. Given W (t)
which is updated by methods in the next subsections, H(t) =
[Hs(t)

T Hn(t)
T ]T∈ R(rs+rn)×1 is optimized for fixed basis

W (t) and V (t) by multiplicative method [11], [12] with T

denoting matrix transpose.

H(t)← H(t)⊗
WT (t) V (t)

W (t)H(t)

WT (t)1
. (1)

where
⊗

and a
b are the element-wise multiplication and divi-

sion of matrices, and 1∈ RM×1 is the all-one vector. Hs(t)
is initialized by Hs(t− 1) and Hn(t) is initialized by random
values for every frame, and (1) is repeated until the conver-
gence.

Then, the speech and noise magnitude spectra estimates,
Ŝ(t) and N̂(t), can be obtained as

Ŝ(t) =Ws(t)Hs(t), N̂(t) =Wn(t)Hn(t). (2)

Using the speech and noise magnitude spectra estimates, the
spectral gain function G(m, t),m = 1, · · · ,M , is computed.
In contrast to the approaches in [5] and [8] which used Wiener
filter, the MMSE-LSA [10] is adopted in this paper, which
leads to the gain function.

G(m, t) =
ξ(m, t)

1 + ξ(m, t)
exp(

1

2

∫ ∞
ν(m,t)

e−t

t
dt) (3)

ν(m, t) =
γ(m, t)ξ(m, t)

1 + ξ(m, t)

in which ξ(m, t) is the a priori SNR and γ(m, t) is the a pos-
teriori SNR for the m-th frequency bin at frame t. They are
estimated as follows using smoothing factors τs and τn

Ps(m, t) = τsPs(m, t− 1) + (1− τs)[(Ŝ(t))m]2 (4)

Pn(m, t) = τnPn(m, t− 1) + (1− τn)[(N̂(t))m]2

ξ(m, t) =
Ps(m, t)

Pn(m, t)
γ(m, t) =

[(V (t))m]2

Pn(m, t)

where Ps(m, t) and Pn(m, t) denote the smoothed speech
and noise PSDs for the m-th frequency bin at frame t, respec-
tively. Finally, the enhanced speech spectrum is calculated
according to X̂(m, t) = G(m, t)Y ′(m, t) when Y ′(m, t)
means the m-th element of Y ′(t).
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2.2. On-line update of speech and noise bases

In NMF bases update, both the noisy input spectrum Y (t)
and the SE output Y ′(t) can be the candidates of the input
for NMF analysis. Y (t) contains complete information on
original speech and noise but the SNR is low. On the con-
trary, Y ′(t) would have better SNR than Y (t) but may have
already lost some of the weak speech components. Based on
this observation, the input to NMF for updating the bases is
constructed with both of the spectra, i.e., Ṽ (t) = [|Y ′(t)|
|Y (t)|]∈ RM×2. The optimization method is the same to
[11], [12] and the update at each iteration is performed by

H̃(t)← H̃(t)⊗
W̃T (t) Ṽ (t)

W̃ (t)H̃(t)

W̃T (t)1̃
, (5)

W̃ (t)← W̃ (t)⊗
Ṽ (t)

W̃ (t)H̃(t)
H̃T (t)

1̃H̃T (t)
.

where 1̃∈ RM×2 is all-one matrix, and H̃(t)∈ R(rs+rn)×2

and W̃ (t) = [W̃s(t) W̃n(t)] are the instantaneous encoding
and basis matrices of t-th frame, respectively. In our work,
H̃(t) is initialized with random values and W̃ (t) is initial-
ized by W (t − 1) at each time frame. The iteration of (5)
is performed continuously until convergence, which does not
require too many iterations.

The instantaneous speech and noise bases matrix W̃ (t)
obtained through (5) usually emphasizes the current input
Y (t) and Y ′(t), resulting in an abrupt change of the bases.
Also, when the bases are updated, it is very important to
discriminate the speech and noise components correctly for
speech enhancement.

To resolve this problem, we use the SPP p(t)∈ RM×1
each element of which indicates the probability of speech
presence in a corresponding frequency bin, to control the
speech and noise bases update. This SPP can be estimated in
the SE stage. The speech and noise bases are updated given
as follows:

Ws(t) = λs(t)⊗ W̃s(t) + (1M×rs − λs(t))⊗Ws(t− 1),
(6)

λs(t) = αsp(t)1rs ,

Wn(t) = λn(t)⊗ W̃n(t) + (1M×rn − λn(t))⊗Wn(t− 1),
(7)

λn(t) = αn(1M×rn − p(t)1rn).

where αs and αn are the maximum update rates for W̃s and
W̃n, and 1M×rs∈ RM×rs , 1M×rn∈ RM×rn , 1rs∈ R1×rs

and 1rn∈ R1×rn are all-one matrices. In (6) and (7), λs(t)∈
RM×rs and λn(t)∈ RM×rn determine the rates of bases up-
date depending on p(t). This update rule enables a robust up-
date of the speech and noise bases leading to a stable speech
enhancement performance. αs and αn are experimentally de-
termined.

Table 1. PESQ score improvement for various noises with
matched noise bases. (input SNR: 5 dB)

Noise Type Leo. F-16 bucc. hfch. Average

SE 0.3018 0.5116 0.5349 0.5422 0.4726

NMF 0.4854 0.2091 0.7321 0.8768 0.5759

SE &
Cabras

0.5247 0.5402 0.6263 0.7081 0.5998

Proposed
w/o update

0.7729 0.6579 0.7814 0.9661 0.7946

Proposed 0.8370 0.6984 0.8079 1.0220 0.8413

3. EXPERIMENT

In this paper, among a number of statistical model-based en-
hancements, we adopted the algorithm presented in [13] for
the SE stage because of its simplicity and good performance.
This algorithm applies Winer filter type gain function, and
produces pre-enhanced signal and the SPP.

Speech and noise audio samples were obtained from
TIMIT and NOISEX-92 databases (DBs), respectively, and
the sampling rate was 16 kHz. A 75% overlap was used along
with 512 point fast Fourier transform. Each noise basis was
trained using 16 s-long noise signal which was not included
in the test DB. The number of speech and noise bases were
40 each (rn = rs = 40). The parameter values related to
smoothing were τs = 0.5 and τn = 0.9. The update rate for
speech bases was fixed at αs = 0.03, and the update rate for
noise bases αn was fixed to 0.03 for the first and the third
experiments, while it was fixed to 0.1 for the second test.

The performance measure was the ITU-T Recommenda-
tion P.862 Perceptual evaluation of speech quality (PESQ)
[14] score. If enhanced signal is close to clean speech, then
PESQ score is 4.5, while least score is 0.

The performance of the following five systems were com-
pared:
◦ SE : Only SE [13] was applied.
◦ NMF : Only NMF based-enhancement was used without
bases update.
◦ SE & Cabras : The NMF-based enhancement proposed
by Cabras et al. [9], which updates speech and noise bases
based on VAD was applied. When speech is absent, only the
noise basis is updated, while only the speech basis is updated
in the presence of speech signal. For the fair comparison,
MMSE-LSA is adopted as the spectral gain function, and pre-
enhanced signal from SE is used for the input, just like our
proposed method.
◦ Proposed w/o update : A cascade form that combines SE
and NMF without the bases update.
◦ Proposed : A cascade form with the on-line bases update.
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Table 2. PESQ score improvement for various noises for
which noise bases were trained with white noise.(input SNR
: 5 dB)

Noise Type Leo. F-16 bucc. hfch. Average

SE 0.3018 0.5116 0.5349 0.5422 0.4726

NMF -0.0394 0.1304 0.1299 0.0008 0.0055

SE &
Cabras

0.2538 0.5003 0.5190 0.5227 0.4490

Proposed
w/o update

0.2530 0.5529 0.6115 0.5396 0.4893

Proposed 0.5958 0.6919 0.7577 0.9861 0.7579

Table 3. PESQ score improvement for various noises mixed
with machinegun noise with matched noise bases.

Noise Type Leo. F-16 bucc. hfch. Average

SE -0.0325 0.0739 0.1604 0.1819 0.0959

Proposed
w/o update

0.8955 0.8567 1.0081 1.0961 0.9641

Proposed 0.8556 0.9263 1.0160 1.0967 0.9737

Three experiments were conducted to demonstrate the
performances of the proposed method 1) in stationary noise
with matched noise bases, 2) in the same noise with mis-
matched noise bases, and 3) in non-stationary noise with
matched noise bases, respectively.

Matched noise bases were trained with the same kind of
noise DB as the noise used for test. For example, F-16 cockpit
(F-16) noise bases were trained by F-16 noise DB. On the
contrary, mismatched noise bases were made from noise DB
different from the actual noise in the test signal, and white
noise was used in this experiment. In the third experiment,
only the noise bases were updated because the SPP from SE
stage can not detect non-stationary noise reliably.

Table 1 shows the PESQ score improvement obtained
with somewhat stationary noises such as Leopard (Leo.), F-
16, buccaneer1 (bucc.) and hfchannel (hfch.) noises when
the tested noise type was included in the training DB. How-
ever, training DB did not include the noise excerpts used in
the test. The SNR for each noise type was set to 5 dB. The
result shows that the proposed method outperformed other
enhancement systems. It is also clear that the on-line bases
update was effective even when the trained Wn matched to
the test DB.

Table 2 shows the PESQ score improvement obtained in
the same noise environment as Table 1, but this time Wn was
trained with white noise only. We can see that performance

of the method with NMF only degrades significantly due to
the heavy dependency on a priori information. It is clear that
the update of bases made significant improvement on NMF
performance.

The PESQ score improvement obtained when the non-
stationary machinegun noise was present as well as the sta-
tionary noises used for the previous experiments are presented
in Table 3. The noise level of machinegun was 5 dB lower
than the speech level. It can be demonstrated that the pro-
posed method could also deal with non-stationary noise well.

4. CONCLUSION

This paper has proposed a speech enhancement method which
combines statistical model-based approach and the NMF ap-
proach with speech and noise bases update. Speech presence
probability is applied to control the speech and noise bases
update. By the combination of two distinct approaches and
on-line speech and noise bases update, non-stationary noises
can be handled and the dependency on the a priori informa-
tion of speech and noise is reduced. Through the experiments,
it was shown that the proposed algorithm performed better
than the other methods regardless of noise stationarity or ap-
propriateness of trained noise bases.
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