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ABSTRACT

In this paper, we study the joint design of Doppler robust

transmit sequence and receive filter to improve the per-

formance of an active sensing system dealing with signal-

dependent interference. The signal-to-interference-plus-noise

ratio (SINR) of the filter output is considered as the perfor-

mance measure of the system. The design problem is cast as a

max-min optimization problem to robustify the system SINR

with respect to the unknown Doppler shifts of the targets.

To tackle the design problem, we devise a novel method to

obtain optimized pairs of transmit sequence and receive filter

sharing the desired robustness property.

Keywords: Doppler shift, max-min, receive filter, robust

design, transmit sequence

1. INTRODUCTION

The performance of an active sensing system can be signif-

icantly improved by judiciously designing its transmit se-

quence and receive filter. Such a design usually encompasses

several challenges including the fact that Doppler shifts of

moving targets are often unknown at the transmit side, the

existence of signal-dependent interference (clutter) as well

as signal-independent interference at the receive side, and

practical constraints such as similarity to a given code.

Joint design of the transmit sequence and the receive filter

has been considered in a large number of studies during the

last decades. Most of the works have been concerned with

either stationary targets or targets with known Doppler shifts

(see e.g. [1–5]). In [6], considering a stationary target, a fre-

quency domain approach has been employed to obtain an op-

timal receive filter and corresponding optimal energy spectral

density of the transmit signal; then a synthesis procedure has

been used to approximately provide the time domain signal.

The work of [7] considers a related problem to that of [6]

under a peak-to-average power ratio (PAR) constraint. The
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reference [8] deals with joint design of transmit sequence and

receive filter under a similarity constraint in cases where the

Doppler shift of the target is known (see also [9]). In [10], the

unknown target Doppler shift has been dealt with via employ-

ing an average approach.

Several researches consider signal-independent clutter

scenarios (see e.g. [11]). The unknown Doppler shift of the

target has been taken into account in [11].

In this paper, we devise a novel method for Doppler robust

joint design of transmit sequence and receive filter of a radar

system in the presence of (signal-dependent) clutter. We con-

sider the SINR at the output of the receive filter as the perfor-

mance measure of the system. Besides an energy constraint,

a similarity constraint is imposed on the transmit sequence to

control certain characteristics of the transmit waveform. The

design problem is cast as a max-min optimization to robustify

the system performance. We devise a cyclic maximization to

tackle a relaxed version of the design problem as well as a

synthesis stage to obtain an optimized solution to the prob-

lem.

The rest of this paper is organized as follows. The prob-

lem formulation is presented in Section 2. Section 3 contains

the steps for the derivation of the proposed method.Numerical

results are provided in Section 4. Finally, conclusions are

drawn in Section 5.

2. PROBLEM FORMULATION

We consider a radar system with transmit sequence x ∈ C
N

and receive filter w ∈ C
N . The discrete-time received sig-

nal backscattered from a moving target corresponding to the

range-azimuth cell under the test can be modeled as (see,

e.g. [8]):

r = αTx⊙ p(ν) + c+ n, (1)

where αT is a complex parameter associated with backscat-

tering effects of the target as well as propagation effects,

p(ν) = [1, ejν , . . . , ej(N−1)ν ]T with ν being the normalized

target Doppler shift, c is the N -dimensional column vector

containing clutter samples, and n is the N -dimensional col-

umn vector of interference samples. The SINR at the output

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 71



of the receive filter can be formulated as

SINR(ν) =
|αT |

2
∣∣wH (x⊙ p(ν))

∣∣2

wHΣc (x)w +wHMw
(2)

where M , E{nnH} and Σc (x) is the covariance matrix of

c.

We consider the SINR in (2) as the performance measure

of the system and aim to find a robust design of the transmit

sequence and the receive filter with respect to the unknown

Doppler shift of the target. In addition to an energy constraint,

a similarity constraint is imposed on the transmit sequence

and hence the design problem can be cast as:

P





max
x,w

min
ν∈Ω

∣∣wH (x⊙ p(ν))
∣∣2

wHΣc (x)w +wHMw
subject to ‖x‖2 = e

‖x− x0‖
2 ≤ δ

(3)

where x0 is the given code associated with the similarity con-

straint, Ω = [νl, νu] ⊆ [−π, π] denotes a given interval of the

target Doppler shift ν and e denotes the maximum available

transmit energy. Let X = xxH and W = wwH . Using

standard properties of the Hadamard product and Lemma 3.1

in [8], SINR(ν) can be alternatively expressed as follows

(the proof is omitted due to the lack of space):

SINR(ν) = |αT |2p(ν)H(W⊙X∗)p(ν)
tr{(Σc(X)+M)W} (4)

= |αT |2p(ν)H(W⊙X∗)p(ν)

tr{(Θc(W)+( β

e
)I)X}

(5)

where β = tr{MW}, and

Σc (X) =
∑Nc−1

k=0

∑L−1
i=0 σ2

(k,i)Jk

(
X⊙Φ

ν̄d(k,i)
ǫ(k,i)

)
JT
k ,

Θc (W) =
∑Nc−1

k=0

∑L−1
i=0 σ2

(k,i)

(
JT
kWJk

)
⊙
(
Φ

ν̄d(k,i)
ǫ(k,i)

)∗

with Nc ≤ N being the number of range rings that in-

terfere with the range-azimuth bin of interest (0, 0), L
is the number of discrete azimuth sectors, σ2

(k,i) is the

mean interfering power associated with the clutter patch

located at the (k, i)th range-azimuth bin whose Doppler

shift is supposed to be uniformly distributed in the interval

Ωc =
(
ν̄d(k,i)

−
ǫ(k,i)

2 , ν̄d(k,i)
+

ǫ(k,i)

2

)
. Herein we have

Φ
ν̄d(k,i)
ǫ(k,i)

(l,m) =

{
1, l = m

e

(
j(l−m)ν̄d(k,i)

)
sin[0.5(l−m)ǫ(k,i)]

[0.5(l−m)ǫ(k,i)]
, l 6= m

and Jk denotes the aperiodic shift matrix [8] for 0 ≤ k ≤
Nc − 1.

Using (4), we cast the design problem w.r.t (X,W) and

relax the rank-one constraints on these matrices. Then, we

consider the following problem:

P1





max
X,W

min
ν∈Ω

p(ν)H (W ⊙X∗)p(ν)

tr {(Σc (X) +M)W}
subject to tr{X} = e

tr{XX0} ≥ ǫδ
X � 0,W � 0

(6)

where X0 = x0x
H
0 and ǫδ = ((2e − δ)/2)2. Note that op-

timized solutions to the design problem P can be obtained

from optimal solutions to the above problem, see below.

3. THE PROPOSED METHOD TO TACKLE THE

DESIGN PROBLEM P

In this section, we devise a novel method to tackle the non-

convex optimization problem P . The method includes solv-

ing the relaxed problem P1 via a cyclic maximization ap-

proach followed by a synthesis stage.

• Optimal X for fixed W: Let t̃ ∈ R denote a slack

variable. For fixed W, the optimization in (6) is equivalent to

the following maximization problem:

PX





max
X,t̃

t̃

tr
{(

Θc(W) + (β
e
)I
)
X
}

subject to p(ν)H (W ⊙X∗)p(ν) ≥ t̃, ∀ ν ∈ Ω
tr{X} = e
tr{XX0} ≥ ǫδ
X � 0.

(7)

Note that problem PX is a linear-fractional maximization

problem with infinitely many constraints (see the first con-

straint). Inspired by Charnes-Cooper transform [13], we let

Y = sX, t = s t̃ for an auxiliary variable s ≥ 0; it can be

shown that the following problem is equivalent to PX :

P ′
X





max
Y,t,s

t

subject to tr
{(

Θc(W) + (β
e
)I
)
Y
}
= 1

p(ν)H (W ⊙Y∗)p(ν) ≥ t, ∀ ν ∈ Ω
tr{Y} = e s
tr{YX0} ≥ ǫδ s
Y � 0, s ≥ 0.

(8)

To deal with the constraint set, we note that the constraint

p(ν)H (W ⊙Y∗)p(ν) ≥ t, ∀ ν ∈ Ω implies the non-

negativity of a trigonometric polynomial of ν over the in-

terval Ω. More specifically, let zk ,
∑N−k

i=1 Zi+k,i for

0 ≤ k ≤ N − 1 with Z = W ⊙ Y∗. It is straightforward

to verify that for any ν ∈ Ω, the aforementioned constraint is

equivalent to h(ν) , z0 − t+ 2ℜ
∑N−1

k=1 zke
−jkν ≥ 0.

We employ a semidefinite representation of the above

constraint using Theorem 3.4 in [14] (see also [15]). In par-

ticular, let z = [z0, z1, . . . , zN−1]
T ; there should exist an

N ×N Hermitian matrix Z1 � 0 and an (N − 1)× (N − 1)
Hermitian matrix Z2 � 0 such that

z = te1 + FH
1

(
diag(F1Z1F

H
1 ) + q⊙ diag(F2Z2F

H
2 )

)

where q = [q0, q1, . . . , qn−1]
T with qk = cos(2πk/n− (νl+

νu)/2) − cos((νu + νl)/2), F1 = [f0, . . . , fN−1] and F2 =
[f0, . . . , fN−2] in which fk = [1, e−jkθ, . . . , e−j(n−1)kθ]T
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with θ = 2π/n, and n = 2N − 1. Consequently, P ′
X is

equivalent to the following semidefinite program (SDP):





max
Y,Z1,Z2,t,s

t

subject to tr
{(

Θc(W) + (β
e
)I
)
Y
}
= 1

z = te1 + FH
1

(
diag(F1Z1F

H
1 ) + q⊙ diag(F2Z2F

H
2 )

)

tr{Y} = e s
tr{YX0} ≥ ǫδ s
Y � 0,Z1 � 0.Z2 � 0, s ≥ 0

(9)

Let (Y,Z1,Z2, t, s) denote an optimal solution to the

above SDP. The corresponding optimal X (i.e., an optimal

solution to PX ) for fixed W is given by Y/s.

• Optimal W for fixed X: Using (5) and techniques

similar to those for fixed W, we obtain the following SDP for

fixed X:





max
W,Z′

1,Z
′

2,t̆
t̆

subject to tr {(Σc (X) +M)W} = 1
z′ = t̆e1 + FH

1

(
diag(F1Z

′
1F

H
1 ) + q⊙ diag(F2Z

′
2F

H
2 )

)

W � 0,Z′
1 � 0,Z′

2 � 0

(10)

where z′ includes z′k =
∑N−k

i=1 Z ′
i+k,i for Z′ = W ⊙X∗.

• The synthesis stage: A judicious synthesis of the opti-

mized transmit sequence x⋆ and receive filter w⋆ from the

obtained (W⋆,X⋆) (via the above cyclic algorithm) is re-

quired to maintain the Doppler robustness. If W⋆ is rank-

one, w⋆ is available via considering W⋆ = w⋆w
H
⋆ ; whereas

if X⋆ = xxH , for x⋆ we have x⋆ = xej arg(xHx0) [16]. In

cases where the rank of either W⋆ or X⋆ is larger than one,

the synthesis of w⋆ or x⋆ is more complicated. To tackle

the synthesis problem, we exploit the rank-one decomposi-

tion method [17, Theorem 2.3]; precisely, a rank-one matrix

xxH can be constructed such that

xHAix = tr {XAi} , i = 1, 2, 3, 4.

where X denotes a given Hermitian positive semidefinite ma-

trix and {A1,A2,A3,A4} are Hermitian matrices (satisfying

some mild conditions).

Let (W⋆,X⋆) denote an optimal solution to P1, and let

ν⋆ = argminν∈Ω p(ν)H(W⋆ ⊙X∗
⋆)p(ν). (11)

Considering the above Theorem and the problem PX , a suit-

able rank-one matrix x⋆x
H
⋆ can be found such that





tr{(Θc(W⋆) + (β/e)I︸ ︷︷ ︸
R1

)X⋆} = xH
⋆ R1x⋆

tr{(W⋆ ⊙
(
(p(ν⋆)p(ν⋆)

H
)∗

︸ ︷︷ ︸
R2

)X⋆} = xH
⋆ R2x⋆

tr{X0X⋆} = xH
⋆ X0x⋆

tr{X⋆} = xH
⋆ x⋆

(12)

We denote the vector obtained via above Theorem by x⋆ =
D(X⋆,R1,R2,X0, I). Similarly, an optimized receive fil-

ter w⋆ is available via using w⋆ = D(W⋆,Q1,Q2,Q3,Q4)
where





Q1 , Σc(X⋆) +M

Q2 , X⋆ ⊙ (p(ν⋆)p(ν⋆)
H)

Q3 , X⋆ ⊙ (p(ν′)p(ν′)H)

Q4 , X⋆ ⊙ (p(ν′′)p(ν′′)H)

(13)

Herein ν′ and ν′′ are two arbitrary Doppler shifts in Ω. Em-

ploying these points leads to considering the behavior of the

SINR associated with the optimal solution w.r.t ν in three

points and so a better synthesis (as compared to considering

just ν⋆).

Table 1 summarizes the steps of the proposed method for

max-min design of transmit sequence and receive filter. Steps

1 and 2 are related to the devised cyclic algorithm and are han-

dled via solving the two SDPs stated in (9) and (10). Steps 4

and 5 aim to synthesize optimized pair of transmit code and

receive filter using Theorem 2.3 in [17]. Herein we remark on

the fact that the ranks of W⋆ and X⋆ depend on the employed

starting point in addition to the parameters of the design prob-

lem. Therefore, for a fixed design problem, it is possible to

try several random initiations and choose the best result (con-

sidering the ranks of the solutions).

Table 1. Proposed method for max-min design of transmit

sequence and receive filter

Step 0: Initialize X with xxH where x is a random vector in CN .

Step 1: Solve SDP in (10) to obtain W.

Step 2: Solve SDP in (9) to obtain X.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. ‖X(κ+1) − X(κ)‖F ≤ µ for a given µ > 0 where κ denotes the

iteration number.

Step 4 (Receive filter synthesis): If W⋆ is rank-one, perform an eigen-

decomposition W⋆ = w⋆w
H
⋆ to obtain w⋆. Otherwise, define w⋆ =

D(W⋆,Q1,Q2,Q3,Q4).
Step 5 (Transmit sequence synthesis): If X⋆ is rank-one, perform an

eigen-decomposition X⋆ = xxH to obtain x⋆ = xej arg (xH
x0). Oth-

erwise, define x⋆ = D(X⋆,R1,R2,X0, I).

4. NUMERICAL EXAMPLES

In this section we provide several numerical examples to ex-

amine the effectiveness of the proposed method. Through-

out the simulations, we consider a sequence length N = 20,

number of interfering range rings Nc = 2, and number az-

imuth sectors L = 100. The interfering signals backscat-

tered from various azimuth sectors are weighted according to

the azimuth beam-pattern characteristic of a typical linear ar-

ray (see [8] for details). A uniformly distributed clutter is

assumed with σ2
(k,i) = σ2 = 100 for all (k, i). As to the

target, we set αT = 1. Concerning the covariance matrix
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Fig. 1. (a) comparison of the robust design and non-robust design for a typical example, (b) the effect of the similarity constraint.

M of the signal-independent interference, it is assumed that

Mm,n = ρ|m−n| with parameter ρ = 0.5. The generalized

Barker code is used for sequence x0 [18]. The size of the sim-

ilarity region is controlled by δ0 = δ/e. The total transmit en-

ergy e is supposed to be equal to N . The convex optimization

problems are solved via the CVX toolbox [19].

We investigate the robustness of the system SINR w.r.t

target Doppler shift assuming Ω = [νl, νu] = [1, 3] and Ωc =
[ν̄d − ǫ

2 , ν̄d + ǫ
2 ] = [−0.1, 0.1] [20]; also the result of non-

robust design [8] with given Doppler shift νgiven = 0.5(νl +
νu) is considered as the benchmark for the comparison. The

results are plotted in Fig. 1 (a) for δ0 = 0.5. It is observed

that using the proposed method leads to a robustness for the

system performance; furthermore, a significant increase in the

minimum value of SINR(ν) is observed as compared with

that of non-robust design. Note that in this example, the ranks

of the optimal W⋆ and X⋆ were equal to one. Examples of

design with various sizes of similarity region are provided in

Fig. 1 (b). In this figure, the behavior of the system SINR is

shown w.r.t target Doppler shift for δ0 in {0.01, 0.2, 0.4, 0.8}.

The robustness property with respect to the target Doppler

shift ν is observed in all examples. As expected, the larger the

δ0, the larger the worst value of the SINR(ν). This is due to

a larger feasibility set for the optimization problem associated

with obtaining X and the fact that the optimal W⋆ and X⋆ are

rank-one.

Next we consider an example in which the rank of opti-

mal W⋆ and X⋆ are larger than one. As discussed earlier, the

rank of the solutions to the relaxed problem P1 depend on the

employed starting point in addition to the design parameters.

Note that it was numerically observed that the rank of X⋆ is

equal to one as long as Ω ∩ Ωc = ∅. As to the rank of W⋆,

a similar observation was made for most of the employed

random starting points. Nevertheless, by setting Ω = [1, 2],
Ωc = [−0.25, 0.25], δ0 = 0.1, we find a case for which we

have rank(W⋆) = 2 and rank(X⋆) = 1. The SINR asso-

ciated with the optimal solutions and the employed rank-one

decomposition method are illustrated in Fig. 2. For the cur-

rent example, we have ν⋆ = 1.71 and the best result for the

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

 

 

target Doppler shift ν

d
B

optimal SINR

synthesized SINR

Fig. 2. An example of using the rank-one decomposition

method for a case in which rank(W⋆) = 2, rank(X⋆) = 1.

decomposition method is obtained with ν′=1.3 and ν′′ = 1.5
(via trying several pairs of (ν′, ν′′)). It is observed that the

synthesized pair of transmit sequence and receive filter fol-

low well the general behavior of the SINR corresponding to

the optimal solutions. A minor degradation for the minimum

value of the synthesized SINR(ν) is also observed due to

synthesis loss.

5. CONCLUDING REMARKS

A joint max-min design of the transmit sequence and receive

filter was considered for cases where the Doppler shift of the

target is unknown. A novel method was proposed to tackle

the design problem under the similarity constraint. The pro-

posed method consists of a cyclic algorithm (to tackle a re-

laxed version of the design problem) along with a synthesis

stage. We considered a reformulation of SINR(ν) by using

W = wwH and X = xxH , relaxation of the rank-one con-

straints on the aforementioned matrices, cyclic maximization

of the relaxed problem, and a synthesis stage (based on a new

rank-one decomposition method). Simulation results showed

that employing the proposed method leads to a considerable

robustness of the system performance w.r.t the target Doppler

shift.
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