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ABSTRACT

In this paper, we propose a parametric multichannel noise re-
duction algorithm utilizing temporal correlations in a noisy
and reverberant environment. Under the reverberant condi-
tion, the received acoustic signal becomes highly correlated in
the time domain and it makes successful noise reduction quite
difficult. The proposed parametric noise reduction method
takes account of interdependencies between components ob-
served from different frames. Extended speech and noise
power spectral density (PSD) matrices are estimated contain-
ing additional temporal information, and the parametric mul-
tichannel noise reduction filter based on these PSD matrices
is applied to the input microphone array signal. According
to the experimental results, the proposed algorithm has been
found to show better performances compared with the con-
ventional multiplicative filtering technique which considers
the current input signals only.

Index Terms— Multichannel noise reduction, micro-
phone array, parameterized non-causal multichannel Wiener
filter, reverberant environment.

1. INTRODUCTION

It is well-known that the quality of a speech signal signifi-
cantly deteriorated when additive noise is present in the back-
ground, and obviously it becomes much worse in many real
situations with reverberation. Over the last few decades, sev-
eral multichannel noise reduction approaches have been pro-
posed [1]-[5]. In many approaches to multichannel noise re-
duction, the clean speech is estimated by multiplying a proper
gain to the input signal, and the gain is obtained from the
channel transfer function (TF) estimates between the speech
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source and the microphone array. Theoretically the utilization
of multiple microphones could make effective noise reduc-
tion possible without much speech distortion when the exact
channel TFs are known. In the real environments, however,
it is quite difficult to estimate the unknown channel TFs, and
inaccurate estimates lead to a serious degradation in noise re-
duction performance.

Recently, an optimal filtering technique which depends on
the statistics of the speech and noise signals was proposed [4]
with new simplified expressions of the parameterized multi-
channel non-causal Wiener filter (PMWF), the minimum vari-
ance distortionless response (MVDR) filter and the general-
ized sidelobe canceller (GSC). This approach estimates the
clean speech component by multiplying a parametric filter to
the input signal observed in the current frame without con-
sidering the temporal correlations at all. In case of a real re-
verberant environment, however, if the effective length of re-
verberation is longer than the frame length, there exist strong
temporal correlations that help to estimate the clean speech
from the received data. Hence it is possible to further im-
prove the performance of the conventional noise reduction
techniques by utilizing not only the spatial correlations but
also the temporal correlations.

In this paper, we propose a parametric multichannel noise
reduction algorithm utilizing the temporal correlations. In or-
der to take advantage of the temporal correlations of the in-
put signals, the proposed method performs a grouping of the
noisy observations not only in the same frame but also in ad-
jacent frames, and estimates the extended power spectral den-
sity (PSD) matrices of the speech and noise data including
cross-correlations between grouped components. The para-
metric filter based on these PSD matrices is applied to the
augmented input observations for multichannel noise reduc-
tion and interference rejection. Through a number of experi-
ments, we have observed that the proposed parametric noise
reduction approach shows performance that is superior to that
of the noise reduction algorithm which considers the current
input signals only.
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2. PROBLEM STATEMENT

Let yi(k, t), xi(k, t) and vi(k, t) denote the short-time Fourier
transform (STFT) coefficients of the noisy speech, clean
speech and noise signal, respectively, for the k-th frequency
bin at frame t observed from the i-th microphone. When
an array of N microphones with an arbitrary geometry is
applied, the STFT component of the noisy speech yi(k, t) is
expressed as

yi(k, t) = xi(k, t) + vi(k, t), i = 1, 2, · · · , N. (1)

In many conventional approaches to multichannel noise
reduction, the clean speech component in the i-th channel is
estimated by multiplying a filter gain to the input microphone
array signal in the following way:

x̂i(k, t) =
N∑
j=1

g∗ij(k, t)yj(k, t) = gH
i (k, t) · y(k, t) (2)

where gi(k, t) = [gi1(k, t), · · · , giN (k, t)]T and y(k, t) =
[y1(k, t), · · · , yN (k, t)]T . The superscripts H , T and ∗ denote
the transpose-conjugate, transpose and conjugate operators,
respectively. Additionally we use the notation (̂·) to denote
“the estimate of”.

3. PARAMETRIC FILTERING FOR
MULTICHANNEL NOISE REDUCTION UTILIZING

TEMPORAL CORRELATIONS

3.1. Relation to prior work

To find a proper filter gains {gi(k, t)} in (2) for noise reduc-
tion, many different approaches have been employed. Com-
pared with the single channel based approaches, those fil-
tering techniques using multiple microphones have achieved
competitive advantage by utilizing additional information
about the spatial properties of the speech and noise compo-
nents. However, the multiplicative filtering method consid-
ers only the spatial correlation while ignoring the temporal
correlations even though it is generally known that the ac-
tual speech signals have high level of temporal correlations.
Moreover, temporal correlations of the received signals be-
come stronger in a reverberant environment. Therefore it
could be an important information to reduce noise compo-
nents and provide accurate estimates of the clean speech.

In this paper, in order to utilize the temporal correlations
of the input signals for multichannel noise reduction, we pro-
pose an extended parametric filtering technique as follows:

x̂i(k, t) =
N∑
j=1

L−1∑
τ=0

g∗ij(k, t, τ)yj(k, t− τ)

=

N∑
j=1

ḡH
ij (k, t)ȳj(k, t) = GH

i (k, t) ·Y(k, t) (3)

where ḡij(k, t) = [gij(k, t, L−1), · · · , gij(k, t, 0)]T , ȳj(k, t)
= [yj(k, t−L+1), · · · , yj(k, t)]T ,Gi(k, t) = [ḡi1(k, t), · · · ,
ḡiN (k, t)]T and Y(k, t) = [ȳ1(k, t), · · · , ȳN (k, t)]T . Com-
pared with a conventional multiplicative filter gi(k, t) in (2),
the dimension of the noise reduction filter Gi(k, t) is ex-
tended from N to NL when we take L neighbor frames from
t to t− L+ 1 into account, and it is easily found that (3) is a
generalized form of (2) which is a special case with L = 1.

3.2. Parametric noise reduction filtering

When X(k, t) and V(k, t) are obtained by stacking the
speech components {xi(k, t)} and the noise components
{vi(k, t)}, respectively in the same order as Y(k, t) with
{yi(k, t)}, we can generalize the definition of the PSD matri-
ces [4] in the following way:

Φyy(k, t) , E{Y(k, t)YH(k, t)},
Φxx(k, t) , E{X(k, t)XH(k, t)}, (4)

Φvv(k, t) , E{V(k, t)VH(k, t)},

where the dimension of each PSD matrix becomes NL×NL.
These PSD matrices contain additional temporal information
while preserving spatial information of the conventional PSD
matrices.

In this paper, we have extended and applied the PMWF,
which includes GSC and MVDR beamformer as special cases
[4], for multichannel noise reduction. The optimal filter gain
Gi(k, t) is given by

Gi(k, t) = [Φ̂xx(k, t) + βΦ̂vv(k, t)]
−1Φ̂xx(k, t)ui (5)

where ui = [0 · · · 0 1︸︷︷︸
(iL)−th

0 · · · 0]T is an NL-dimensional

vector and β ≥ 0 is a factor that allows for tuning the noise
reduction and speech distortion. It is noted that Gi(k, t) de-
pends on Φ̂xx(k, t) and Φ̂vv(k, t) only, and an explicit esti-
mation of the channel TFs in real environments is not required
any longer. Consequently the clean speech component of the
i-th channel x̂i(k, t) is obtained by applying (5) to (3).

3.3. Estimation of speech and noise PSD matrices

Since the parametric noise reduction filter depends on the
clean speech and noise PSD matrices, Φxx(k, t) and Φvv(k, t),
accurate estimation of these PSD matrices is quite important
for successful noise reduction. For robust estimation of the
statistics of signals, we update the estimates for Φyy(k, t)
and Φvv(k, t) recursively as follows:

Φ̂yy(k, t) = αy(k, t)Φ̂yy(k, t− 1)

+ [1− αy(k, t)]Y(k, t)YH(k, t), (6)

Φ̂vv(k, t) = α̃v(k, t)Φ̂vv(k, t− 1)

+ [1− α̃v(k, t)]Y(k, t)YH(k, t) (7)
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where 0 ≤ αy(k, t) ≤ 1 and 0 ≤ α̃v(k, t) ≤ 1 are two
forgetting factors.

Contrary to αy(k, t) which is usually fixed to a constant
value, α̃v(k, t) should be regard as a time-varying smoothing
factor depending on the speech presence probability (SPP). In
order to control the noise tracking speed according to whether
the speech is present or absent, α̃v(k, t) is updated as

α̃v(k, t) = αv(k, t) + (1− αv(k, t))p(k, t) (8)

where 0 ≤ αv(k, t) ≤ 1. The multichannel SPP p(k, t) in (8)
is obtained by [6] under the assumption that the speech and
noise components are multivariate Gaussian and their real and
imaginary parts are uncorrelated and identically distributed.

In a single channel scenario, the minima controlled re-
cursive averaging (MCRA) algorithm [7] is one of the most
popular approaches to estimate noise statistics in adverse con-
ditions, and recently it is generalized to the multichannel case
[5]. In this work, therefore, the multichannel MCRA ap-
proach is applied to track the time-varying noise PSD matrix
in (7).

Finally, the PSD matrix of clean speech is obtained as the
following form [4], [5], [6]

Φ̂xx(k, t) = Φ̂yy(k, t)− Φ̂vv(k, t) (9)

under the assumption that the speech and noise components
are uncorrelated.

4. EXPERIMENTAL RESULTS

In order to verify the performance of the proposed paramet-
ric multichannel noise reduction algorithm, a number of ob-
jective quality measurements were performed under various
noisy conditions with different values of L, the number of pre-
vious frames we took account of. We considered a simulation
setup in which a target speech and the interference sources
were located in a reverberant room with dimensions of 6.7 m
× 6.1 m × 2.9 m. The image method [8], [9] was used to
generate the impulse responses for the room with the rever-
beration time T60 = 300 ms. The speech and the interference
sources were located at (1.737 m, 4.6 m, 1.4 m) and (3.337 m,
4.6 m, 1.4 m), respectively, and we adopted a scenario with
two microphones which are placed at (2.437 m, 5.6 m, 1.4 m)
and (2.637 m, 5.6 m, 1.4 m). The test material consisted of ten
utterances from the TIMIT database which were sampled at
16 kHz, and corrupted by three different types of interference
signals. For the experiments, babble, factory and F-16 noises
from the NOISEX-92 database were applied with 0, 5, 10, 15
and 20 dB signal-to-interference ratio (SIR). The multichan-
nel noise reduction filter in (3) was implemented with various
values of L, and obviously the case of L = 1 is equivalent to
the conventional multiplicative filtering method. The update
factor for the noise PSD matrix was set to αv(k, t) = 0.99 to
implement the proposed algorithm, and the values of αy(k, t)

Fig. 1. Results of the perceptual evaluation of speech quality
under different noisy conditions with various values of L.

Table 1. Results of the cepstrum distance and the output SIR
under different noisy conditions with various values of L.

[dB]
Noise Unpro L

type cessed 1 2 3 4

Babble 6.57 6.11 5.96 5.90 5.88

CD Factory 7.08 6.62 6.39 6.29 6.26

F-16 7.29 6.70 6.49 6.39 6.35

Babble 10.37 20.24 21.53 22.22 22.59

SNRo Factory 11.75 22.14 23.61 24.12 24.75

F-16 11.45 22.93 24.37 25.44 25.70

and β were experimentally determined depending on L and
an estimate of the input SIR.

In order to evaluate the performance of the proposed mul-
tichannel parametric filtering approach, we calculated the per-
ceptual evaluation of speech quality (PESQ) [10], the cep-
strum distance (CD) [11] and the output SIR (SIRo) [4], [12]
which is defined by

SIRo , E{||Xfiltered(k, t)||2}
E{||Vresidual(k, t)||2}

=
E{Gi

H(k, t)X(k, t)XH(k, t)Gi(k, t)}
E{Gi

H(k, t)V(k, t)VH(k, t)Gi(k, t)}
. (10)

The results of PESQ obtained under different noisy condi-
tions with various values of L are shown in Fig. 1, and the
results of CD and SIRo are summarized in Table 1. All ex-
perimental results are averaged over all of the input SIRs.
From the results in Fig. 1, we can see that the multichan-
nel noise reduction performance which is measured in terms
of PESQ improved as the value of L increased, and the pro-
posed approach outperformed the case with L = 1, which is
equivalent to the conventional multiplicative algorithm. Fur-
thermore as seen in Table 1, the noise reduction performance
which is measured in terms of CD and SIRo also improved as
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Fig. 2. Waveform and spectrogram of the (a) first micro-
phone noise-free speech, (b) speech corrupted with babble
noise (SIR = 10 dB) (c) output of the conventional multiplica-
tive filter (L = 1), and (d) output of the proposed filter utilizing
temporal correlation (L = 4).

the value of L increased, and the proposed filtering technique
showed better quality than the conventional one.

For the convenience of comparing the experimental re-
sults, we show the waveforms and spectrograms of an exam-
ple of the noise-free, noisy, and filtered signals in Fig. 2.
From the result we can see that the proposed approach slightly
improved the performance of multichannel noise reduction in
the reverberant environments.

5. CONCLUSIONS

In this paper, we have proposed a parametric filtering algo-
rithm for multichannel noise reduction utilizing temporal cor-
relations. In contrast to the conventional multiplicative filter-
ing method, the proposed filtering technique considers corre-
lations between signal components in adjacent frames. An
extended form of speech and noise PSD matrices is intro-
duced, and their estimates are recursively updated for suc-
cessful noise reduction. To reject interferences from the re-
ceived data, the parametric filter based on these PSD matrices
is applied to the augmented input observations. Performances
of the proposed approach have been evaluated by a number
of objective quality measurements under various conditions,
and experimental results have shown that the proposed al-

gorithm outperforms the conventional multiplicative filtering
technique not utilizing temporal correlations at all.
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