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ABSTRACT

Speech separation is a challenging problem at low signal-to-
noise ratios (SNRs). Separation can be formulated as a classi-
fication problem. In this study, we focus on the SNR level of
-5 dB in which speech is generally dominated by background
noise. In such a low SNR condition, extracting robust features
from a noisy mixture is crucial for successful classification.
Using a common neural network classifier, we systematically
compare separation performance of many monaural features.
In addition, we propose a new feature called Multi-Resolution
Cochleagram (MRCG), which is extracted from four cochlea-
grams of different resolutions to capture both local informa-
tion and spectrotemporal context. Comparisons using two
non-stationary noises show a range of feature robustness for
speech separation with the proposed MRCG performing the
best. We also find that ARMA filtering, a post-processing
technique previously used for robust speech recognition, im-
proves speech separation performance by smoothing the tem-
poral trajectories of feature dimensions.

Index Terms— Speech separation, classification, multi-
resolution cochleagram, ARMA filtering

1. INTRODUCTION

Monaural speech separation in low SNR conditions is a very
challenging task in speech processing. A recent approach to
speech separation applies binary masking to the spectrogram
or cochleagram of the mixture, where the ideal binary mask
(IBM) is considered the computational objective [1]. The
IBM assigns the value 1 to a time-frequency (T-F) unit if the
SNR within the unit exceeds a threshold, and 0 otherwise.
Therefore, the speech separation problem can be treated as
estimating the IBM. In other words, the separation problem
becomes a binary classification problem [2]. Recent stud-
ies have shown that this approach is effective for improv-
ing speech intelligibility of human listeners in background
noise [3] [4].
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0130), an NIDCD grant (R01 DC012048), an STTR subcontract from Kuzer
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The performance of classification-based separation mainly
depends on the choice of classifier and discriminative features
extracted from the mixture. In this study, we systematically
examine the robustness of many popular features for classi-
fication while fixing the classifier to a multilayer perceptron
(MLP) [5]. A recent study evaluates the performance of a
number of features [6], but the evaluation is done at 0 dB
where human listeners perform almost perfectly (i.e. no room
to improve in terms of speech intelligibility). Our study is
conducted using two challenging non-stationary noises: fac-
tory noise and babble noise, mixed at -5 dB SNR where the
recognition rate of even normal-hearing listeners is less than
50% [3]. In addition, we include an extensive list of features
that have been shown to be effective for robust automatic
speech recognition (ASR). Robust features for ASR, such as
mel-frequency cepstral coefficients (MFCC) and perceptual
linear prediction (PLP), can be useful for classification-based
speech separation [4]. In addition to evaluating commonly
used features in robust ASR in terms of their discriminant
power in IBM estimation, we propose a new feature, which
we call multi-resolution cochleagram (MRCG), for the pur-
pose of speech separation. As shown later, the MRCG feature
produces the best separation performance.

The paper is organized as follows. Section 2 introduces
our feature evaluation framework. Candidate features as well
as the proposed MRCG feature are described in Section 3,
followed by a discussion in feature post-processing in Section
4. We present experimental results in Section 5. Section 6
concludes the paper.

2. FEATURE EVALUATION FRAMEWORK

The computational goal of classification-based speech separa-
tion is to estimate the IBM given the features extracted from
the mixture. We use a 32-channel gammatone filterbank to
calculate the IBM with 20 ms frame length and 10 ms frame
shift. The local SNR threshold that is used to label whether
a T-F unit is target dominant is set to -10 dB throughout the
study. The feature evaluation framework consists of feature
extraction and neural network classification, as shown in Fig.
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Fig. 1. Diagram of the feature evaluation framework

1. We extract frame-level acoustic features from a mixture
and feed them into an MLP to estimate each frame of the
IBM.

The estimated binary mask is compared against the
ground truth IBM. There are several criteria to measure the
similarity between the estimated mask and the IBM. One
criterion is classification accuracy where percentage of cor-
rectly labeled T-F units is calculated. Classification error
alone is not sufficient to measure the performance since it
does not account for different error types. Therefore, we add
the HIT-FA criterion where HIT is the percentage of correctly
predicted target-dominant T-F units and FA is the percentage
of wrongly predicted interference-dominant T-F units. HIT-
FA rate is shown to be well correlated with human speech
intelligibility [3].

Besides evaluating individual features, we also explore
complementary features. Feature combination may yield bet-
ter performance [6]. We use group lasso to select the comple-
mentary features [7]. Group lasso imposes `1/`2 mixed norm
regularization on logistic regression. `1/`2 regularization is
known to yield sparsity between feature groups (i.e. feature
types). The input to group lasso is a high dimensional vector
by concatenating all features and the target is the IBM. Re-
gression is applied channel by channel, and the average mag-
nitudes of regression coefficients across channels indicate the
discriminative power of each feature type. The complemen-
tary features selected by the group lasso are further evaluated
by the MLP.

3. FEATURE DESCRIPTION

3.1. Existing Features

First, we evaluate three popular speech recognition features
including mel-frequency cepstral coefficient (MFCC), per-
ceptual linear prediction (PLP) and relative spectral transform-
PLP (RASTAPLP) [8]. In this paper, we follow standard
procedures to extract 31-D MFCC, 13-D PLP and 13-D
RASTAPLP. In addition, we examine two autocorrelation-
related speech recognition features, namely relative auto-
correlation sequence-MFCC (RAS-MFCC) [9] and phase
autocorrelation-MFCC (PAC-MFCC) [10]. The idea of RAS
is to reduce slow-varying components in the signal by fil-

tering temporal autocorrelation trajectories of the signal.
RAS-MFCC is computed by applying the MFCC feature ex-
traction procedure on the filtered autocorrelation sequences.
In PAC-MFCC, the angle between a signal and its shifted
version is computed, then MFCC is applied to the angle
sequences to derive cepstral coefficients. We use 31-D RAS-
MFCC and 31-D PAC-MFCC in this paper. We also evaluate
power normalized cepstral coefficients (PNCC) and Gabor
filterbank (GBFB) features. PNCC employs power-law non-
linearity, asymmetric filtering and temporal masking [11].
GBFB utilizes spectrotemporal modulation frequencies to
improve feature robustness [12].

Besides the speech recognition features, we also evalu-
ate the amplitude modulation spectrogram (AMS) [3] and
pitch-based features. We compute 15-D AMS following the
standard procedure [3]. As for pitch-based features, we first
extract pitch tracks using PEFAC [13]. Based on the pitch
tracks, we compute 6-D features described in [6] for every
T-F unit after passing the signal through a 64-channel gam-
matone filterbank. The pitch-based features therefore have
64×6 dimensions. Pitch-based features can not be used alone,
as no pitch exists in unvoiced intervals. For training, we use
the pitch extracted from the clean speech. During the test
phase, the pitch is estimated from mixtures by PEFAC.

Gammatone domain features such as gammatone fre-
quency cepstral coefficient (GFCC) might also provide useful
information for IBM estimation. To compute GFCC, the
input signal is decomposed into sub-band signals by a 64-
channel gammatone filterbank. Then, each sub-band signal
is down-sampled to 100 Hz, followed by point-wise loudness
compression using cubic root operation. The time shift be-
tween two contiguous point of the down-sampled signal is 10
ms, which matches the frame shift used in MFCC. We further
apply DCT to derive the first 31 coefficients as features.

3.2. Multi-Resolution Cochleagram

We propose a new speech separation feature called the Multi-
Resolution Cochleagram (MRCG). MRCG is constructed by
combining multiple cochleagram representations at different
resolutions. A high-resolution cochleagram captures local in-
formation while a low-resolution cochleagram captures infor-
mation in a broader spectrotemporal context. Although delta
features contain some temporal context, they fail to model
temporal and spectral contexts jointly. The multi-resolution
contexts of a T-F unit can potentially help classify the T-F
unit as target-dominant or interference-dominant. The design
of MRCG features is meant to embody the spectrotemporal
context systematically, in order to facilitate the estimation of
the IBM. The procedure of computing MRCG is as follows:

1. Given an input mixture, compute the first 64-channel
cochleagram, CG1, with the frame length of 20 ms and
frame shift of 10 ms. This is a commonly used form
of cochleagram. A log operation is applied to each T-F
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unit.
2. Similarly, compute CG2 with the frame length of 200

ms and frame shift of 10 ms.
3. CG3 is derived by averaging CG1 across a square win-

dow of 11 frequency channels and 11 time frames cen-
tered at a given T-F unit. If the window goes beyond
the given cochleagram, the outside units take the value
of zero (i.e. zero padding).

4. CG4 is computed in a similar way to CG3, except that
a 23×23 square window is used.

5. Concatenate CG1-4 to obtain a MRCG feature, which
has 64×4 dimensions for each time frame.

4. FEATURE POST-PROCESSING

To capture the temporal trajectory of each feature dimension,
delta and double-delta features can be used. The delta and
double-delta features usually provide extra useful informa-
tion. Previous study shows that delta and double delta features
are also beneficial for speech separation [6]. We add delta and
double-delta features to each feature type in this study. Mean
variance normalization is usually a necessary post-processing
technique, especially for neural network classifiers. We ap-
ply mean variance normalization to every feature type in this
study.

Recent study shows that applying auto-regression moving-
average (ARMA) filtering to mean-variance-normalized fea-
tures usually leads to better performance in speech recogni-
tion [14]. ARMA filtering is defined in Equation (1) where
Ĉ(τ) is the feature vector at frame τ , C̆(τ) is the filtered
feature vector at frame τ and m is the order of the filter. The
idea of ARMA filtering is to smooth the temporal trajecto-
ries of each feature dimension, making them less sensitive to
noise interference. However, the effect of ARMA filtering on
classification-based speech separation is unknown. We treat
ARMA filtering as an optional step in feature post-processing.
The results are discussed in the next section.

C̆(τ) =
C̆(τ−m) + · · ·+ C̆(τ−1) + Ĉ(τ) + · · ·+ Ĉ(τ+m)

2m+ 1
(1)

5. EXPERIMENTAL RESULTS

5.1. Experiment Setting

We create mixtures using the IEEE corpus recorded by a male
speaker [15]. A factory noise and a babble noise from the
NOISEX noise corpus are used [16]. Each mixture is obtained
by mixing a sentence with one type of noise at -5dB SNR.
We use 480 sentences for training and another 50 sentences
for testing. The 4-minute factory and babble noise recordings
are cut into two halves. We randomly select noise segments in
the first half to mix with the 480 sentences to form the training
set. The test set is created in the same way except that we use
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Fig. 2. Effect of ARMA filtering for the factory noise at -5dB
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Fig. 3. Effect of ARMA filtering for the babble noise at -5dB

the second half of the noise. This guarantees that the noise
segments in the test set are not seen in the training set. We
train and test on the same type of noise. A one-hidden-layer
MLP is used as the classifier for IBM estimation.

5.2. Result Analysis

We first examine the effect of employing ARMA filtering.
Experimental results show that the second order (m =
2) ARMA filtering improves all evaluated features except
MRCG. The effects of ARMA filtering on MRCG, GFCC,
MFCC and PLP are shown in Fig. 2 and Fig. 3 for the fac-
tory noise and the babble noise, respectively. HIT-FA rates
for GFCC, MFCC and PLP are clearly improved by ARMA
filtering while MRCG is almost not affected. MRCG con-
tains low-resolution cochleagram features that are derived
by smoothing high-resolution cochleagram feature, which
makes ARMA (only temporal smoothing) less needed. The
accuracies for all features except MRCG are also improved
by about 1% on average.

Although the proposed MRCG is not improved by ARMA
filtering, it performs the best among all evaluated features in
terms of HIT-FA and accuracy for both factory noise and
babble noise. As shown in Table 1 and Table 2, the perfor-
mance of MRCG is consistently better than the other features
in both voiced interval and unvoiced interval. We want to
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Table 1. Classification performance for the factory noise with ARMA post-processing at -5dB
Feature Overall Voiced Unvoiced AccuracyHIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
MRCG 70% 7% 63% 76% 9% 67% 41% 5% 36% 88.0%
GFCC 67% 6% 61% 74% 8% 66% 32% 4% 28% 87.7%

RAS-MFCC 63% 6% 57% 70% 9% 61% 29% 4% 25% 87.0%
MFCC 64% 7% 57% 70% 9% 61% 31% 5% 26% 86.5%

PLP 62% 6% 56% 70% 8% 62% 28% 4% 24% 87.0%
GBFB 64% 7% 57% 72% 9% 63% 22% 5% 17% 86.3%
PNCC 62% 6% 56% 69% 9% 60% 26% 4% 22% 86.6%

RASTAPLP 58% 6% 52% 64% 8% 56% 28% 4% 24% 86.0%
AMS 43% 6% 37% 50% 8% 42% 11% 5% 6% 82.2%

PAC-MFCC 22% 5% 17% 23% 2% 21% 14% 7% 7% 77.9%
PITCH N/A N/A N/A 58% 6% 52% N/A N/A N/A N/A

Table 2. Classification performance for the babble noise with ARMA post-processing at -5dB
Feature Overall Voiced Unvoiced AccuracyHIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
MRCG 62% 13% 49% 66% 20% 46% 47% 8% 39% 79.5%
GFCC 60% 14% 46% 65% 20% 45% 41% 10% 31% 78.3%

RAS-MFCC 55% 14% 41% 59% 20% 39% 39% 9% 30% 76.9%
MFCC 57% 14% 43% 62% 21% 41% 39% 9% 30% 77.5%

PLP 53% 12% 41% 58% 18% 40% 37% 8% 29% 77.4%
GBFB 59% 18% 41% 65% 26% 39% 35% 13% 22% 74.5%
PNCC 58% 14% 44% 63% 22% 41% 40% 10% 30% 77.2%

RASTAPLP 52% 14% 38% 56% 19% 37% 38% 10% 28% 75.9%
AMS 35% 9% 26% 42% 13% 29% 7% 7% 0% 73.6%

PAC-MFCC 19% 8% 11% 20% 6% 14% 14% 9% 5% 69.8%
PITCH N/A N/A N/A 58% 25% 33% N/A N/A N/A N/A

point out that GBFB is also a multi-resolution feature, but
MRCG clearly performs better than GBFB on the tested
noises. We also compute short-time objective intelligibility
(STOI) scores by comparing the clean speech and the resyn-
thesized speech using the estimated IBM [17]. MRCG also
performs the best in terms of STOI score.
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Fig. 4. Average magnitudes of regression coefficients resulted
from group lasso

The features selected by group lasso for the factory noise
are shown in Fig. 4. The two clusters of spikes correspond
to MRCG and pitch-based features while other features have
near-zero coefficients, indicating MRCG and pitch-based
features are complementary. We combine these two feature
types, but only obtain 53% HIT-FA for the factory noise,
which is worse than MRCG alone. This is due to the fact that
ground truth pitch is used for both training and group lasso
while estimated pitch is used in testing. Pitch estimation at

-5dB is very difficult. If we use ground truth pitch in testing,
the combination of MRCG and pitch features produces 70%
HIT-FA, which is substantially better than any individual
feature type in this study. Similar trend is observed for the
babble noise.

6. CONCLUDING REMARKS

In this study, we have systematically evaluated robust ASR
features for classification-based speech separation at -5 dB
SNR. We have also proposed a new feature called MRCG.
Experimental results show that MRCG outperforms the exist-
ing features in terms of classification accuracy and HIT-FA.
We have also found that ARMA filtering, previously used for
feature post-processing in speech recognition, improves many
existing features for separation.

In addition, we have explored feature combination using
group lasso and found that MRCG and pitch-based features
form the best combination in our feature pool. However, clas-
sification results show MRCG combined with pitch does not
perform well due to poor pitch estimation in testing; pitch es-
timation at such a low SNR is very difficult. We expect better
separation as pitch estimation improves in very noisy condi-
tions in the future.
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