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ABSTRACT

We propose a mask-based enhancer for very low quality
speech that is able to preserve important cues in a noise-
robust manner by identifying the time-frequency regions that
contain significant speech energy. We use a classifier to
estimate a time-frequency mask from an input feature set
that provides information about the energy distribution of
both voiced and unvoiced speech. We evaluate the enhancer
on a range of noisy speech signals and demonstrate that it
yields consistent improvements in an objective intelligibility
measure.

Index Terms— Speech enhancement, binary mask,
speech intelligibility

1. INTRODUCTION

The perceived quality, and in more severe cases the intelli-
gibility, of speech signals is impaired by the adverse noise
conditions that can be encountered in real environments.
Many of the numerous approaches to single-channel speech
enhancement process the signal in a transform domain in
which both speech and noise signals are sparse. In the
popular techniques based on spectral subtraction [1] or
minimum mean square error (MMSE) [2, 3], the speech
is enhanced by applying an adaptive gain function in the
time-frequency domain. Although these approaches normally
aim to estimate the clean speech by applying a continuous
gain, the goal of the more recently proposed time-frequency
binary mask approaches is to retain speech information by
using binary gain values. The principal advantage of the
binary mask approach over other state-of-the-art algorithms
operating in the time-frequency domain is that the problem of
enhancement is changed from one of gain estimation to one
of classification.

A speech enhancer using binary masks was introduced
in [4, 5]. The classification of each time-frequency cell was
based on the likelihood ratio of two Gaussian mixture models
(GMMs) trained on time-frequency cells whose local whose
local signal-to-noise ratio (SNR) was respectively above or
below a threshold. The enhancer was evaluated on noisy
speech at −5 and 0 dB and consistently improved the sub-
jective intelligibility. Binary masks for speech enhancement

have also been estimated using support vector machines
(SVMs) [6, 7], deep neural networks [8, 9] and sparse coding
techniques [10].

Our aim in this paper is to estimate the location of the
time-frequency regions whose speech energy is above a
frequency-dependent threshold. We extract features from
the speech by using robust algorithms for detecting voiced
speech, identifying its pitch, estimating the speech active
level and localizing sibilant phones. In this paper, we focus
on the estimation of the mask by exploiting the information
captured by these algorithms.

2. GOAL OF MASK ESTIMATION

Early mask estimation algorithms used as their target the
“ideal binary mask" (IBM) [11] obtained with oracle knowl-
edge of the clean speech signal by comparing the SNR in each
time-frequency bin to a fixed threshold. Many studies [12, 13]
have shown that applying an IBM to noisy speech can
provide perfect intelligibility for a range of fixed thresholds.
The “target binary mask" (TBM) [14] achieves the same
intelligibility as the IBM but eliminates dependency on the
SNR by comparing the clean speech short-time spectra to the
long-term average speech spectrum (LTASS) of the speaker.
It has been found in [15] that the LTASS of speech signals
is largely independent of both speaker and language and can
therefore be represented by a universal LTASS. Accordingly,
we here propose as the goal of our mask estimator, a speaker-
independent universal TBM (UTBM) which is defined by

UTBM(t, f) =

{

1 if S(t, f) > L(f) + α+ LC,
0 otherwise. (1)

where all quantities are in dB. S(t, f) is the speech power at
each time-frequency bin, α is the active level [16] of the input
speech, LC is a fixed threshold called the “local criterion" and
L(f) is the universal LTASS spectrum from [17] normalized
to an active level of 0 dB.

We evaluate the predicted intelligibility of the UTBM by
using the STOI measure [19], which has been shown to give
accurate predictions of the intelligibility of speech that has
been enhanced by time-frequency gain modification. A com-
parison between the predicted intelligibility versus LC for
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Fig. 1. Average predicted intelligibility using STOI over 98 speech
segments of 5 s duration from 4 speakers from the SAM database
[18]. The calculated TBM and UTBM for different LC values have
been used to modulate speech shape noise.

TBM and UTBM is provided in Fig. 1. The TBM and UTBM
were calculated for different LC values and used to modulate
speech shaped noise. We can observe that both masks follow
a similar intelligibility pattern but with a horizontal shift of
5 dB. The center of the high intelligibility range is at LC =
−5 dB for UTBM and at LC = 0 dB for TBM. In general,
speech will be intelligible irrespective of background noise as
long as its high energy features are preserved.

3. SYSTEM OVERVIEW

A block diagram of the binary mask estimation system is
shown in Fig. 2, which illustrates the steps of the mask es-
timation. The purpose of the estimation system is to deter-
mine a mask value, M(t, fe), for each time frame, t, and
each frequency bin, fe, that approximates the UTBM target,
M̂(t, fe). In the training step, the inputs to the classifier
training block for each time frame consists of a set of 145
features derived from the noisy training signal, y(τ), together
with the corresponding binary-valued mask target, M(t, fe),
derived from the clean speech, s(τ). In the mask estimation
phase, the mask, M̂(t, fe), is estimated from the 145 input
features alone.

3.1. Feature estimation

The selected feature set aims to provide information about the
energy distribution of the speech. The feature set, explained
below in detail, captures information about the presence of
voiced speech and its fundamental frequency and also about
the presence of sibilant speech. Moreover, the feature set
also includes the normalized noisy speech and a noise es-
timate, which provides information about the SNR at each
time-frequency bin.

In the next subsections, we explain the various processing
blocks in Fig. 2 which are used to extract the features.

3.1.1. Level normalization

To ensure that classification is independent of the signal input
level, the first step of the system is the power normalization of
the speech component of the noisy speech signal, y(τ). The
speech active level is estimated using the noise-robust algo-
rithm described in [20] and the normalization is performed
such that:

y(τ) = 10−lc/20y(τ) (2)

where lc is the estimated active speech level in dB and y(τ)
the normalized signal. In the experimental results presented
below, the power normalization is performed over the entire
duration of the utterance.

3.1.2. Pitch and voiced speech estimator

Most voiced speech energy is concentrated at the fundamental
frequency and its harmonics. Therefore, identifying voiced
speech segments and estimating their fundamental frequency
makes it possible to locate high speech energy regions. For
each time-frame, t, the PEFAC algorithm [21, 22] provides to
the classifier a fundamental frequency estimate, f̂0(t), and a
voiced-speech probability, pv(t).

3.1.3. Sibilant speech detector

Identifying time-frames which contain sibilant phones is im-
portant for the preservation of aperiodic speech energy at high
frequencies. Furthermore, an estimation of the power spec-
trum of the sibilant phone helps to identify the frequency
bands containing most of the sibilant speech energy. The
algorithm in [23], which locates sibilant phones, is used to
extract for each time-frame t the sibilant speech probabil-
ity, ps(t), and a 14-component vector containing the normal-
ized sibilant power spectrum estimate in 500Hz bands from
1.5 kHz to 8 kHz, b̄(t, fl).

3.1.4. Time-frequency decomposition

The inclusion of the normalized noisy speech periodogram
and the noise estimation as parameters aids the mask esti-
mation algorithm by providing information about the energy
distribution across frequency of both speech and noise. The
normalized input signal, ȳ(τ), is transformed into the time-
frequency domain using the short-time Fourier transform
(STFT).

The spectrum of each frame is interpolated onto 64 ERB
spaced frequency bands ranging from 40Hz to 8 kHz. The use
of the ERB frequency scale [24] ensures that the frequency
bands correspond to the spectral resolution of the ear. The
output of the time-frequency transformation, Y (t, fe), is used
as a parameter for the classifier together with a noise estimate,
N̂(t, fe). The noise periodogram is estimated using the algo-
rithm described in [25] and the implementation provided in
[22].
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Fig. 2. Block diagram of the mask estimation system proposed. Signal vector dimensions are indicated in brackets.

3.2. Classifier

A non-parametric classification and regression tree (CART)
[26] is used to generate the mask. The CART approach is
convenient to handle the heterogeneous nature of the input
parameters and the complex relationship between them and
the target mask. The CART is trained as a regression tree
using the binary valued UTBMmask values as the target. The
classifier outputs lie in the range 0 to 1 and can be interpreted
as the probability that the corresponding time-frequency bin
energy lies above the UTBM energy threshold. The estimated
probability can than be converted to a binary value by com-
paring it with a threshold.

4. EXPERIMENTS

The training set and the test set from the TIMIT database [27],
which are from distinct speakers, were respectively used for
training and testing the algorithm. The sampling frequency
of the speech material is 16 kHz. To determine the ground
truth for the binary mask, the UTBM was calculated for each
utterance from the clean speech signal. The LC parameter
was set to−5 dB, which, as was shown in Fig. 1, provides the
best intelligibility results.

The STFT used a Hamming analysis window of 90ms
duration and an inter-frame time increment of 22.5ms. The
length of the window was chosen so that speech harmonics
could be resolved for all f0 values. The frame overlap of 75%
results in perfect reconstruction with the Hamming window
used for both analysis and synthesis. For mask estimation,
the spectrum of each frame was interpolated onto 64 ERB
spaced frequency bands ranging from 40Hz to 8 kHz. We
expect this frequency resolution to provide good performance
since high intelligibility was found in [28] when using more
than 16 frequency bands.

The regression tree was trained using the MATLAB im-
plementation from the statistics toolbox. We used 300 TIMIT
utterances from the training set mixed with 12 noises from
the RSG-10 database [29]. The noise types included: factory,

babble, buccaneer and F16 fighter jets, engine room, oper-
ation room, HF radio channel, leopard and M109 tank, pink,
car and white at SNRs between−5 dB to+9 dB in 2 dB steps.
The calculation of the SNR used ITU-T P.56 [16, 22] for the
speech level and unweighted power for the noise. A separate
regression tree was trained for each of the 64 frequency bands.
The input to each regression tree contained the entire feature
vector, rather than just its local frequency components.

5. RESULTS

The performance of the mask estimation was evaluated using
100 utterances from the test set of the TIMIT database mixed
with noises from both the RSG-10 database [29] and the ITU-
T P.501 standard [30]. SNRs from −5 to +10 dB were used
for evaluation. For each trial, a random segment within the
noise file was selected, so that the actual noise samples were
distinct.

Performance evaluation used the intrusive objective in-
telligibility measure STOI [19]. This objective algorithm
provides a value between 0 and 1 which has been found
to have a monotonic relation with the subjective speech-
intelligibility [19].

5.1. Continuous versus binary-valued masks

We first evaluate the performance of the continuous versus
the binary gain mask. To define the binary mask, we set a
probability threshold, pb, above which the mask is set to 1

M̂B(t, f) =

{

1 if M̂(t, f) > pb,
0 otherwise. (3)

where M̂B(t, f) and M̂(t, f) represent the binary and con-
tinuous gain mask respectively. We evaluated the results for
different pb on 100 utterances from the test set on the same
noise types used for training. It was found that the highest
STOI values were achieved when using the continuous gain
mask which we therefore use in the evaluations below. An
example for factory noise at −5 dB SNR is shown in Fig. (3),
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Fig. 3. STOI values for the continuous gain mask and the different
binary masks for factory noise at −5 dB SNR. The STOI values are
the average over 100 utterances.

where the STOI value for the continuous gain mask outper-
forms the binary mask estimated for any tested threshold.

5.2. Evaluation on seen and unseen noise types

For performance comparison, the log-MMSE algorithm [3,
22], and the spectral subtraction [1, 22] speech enhancement
algorithm were included in the evaluation. In both cases, the
noise was estimated using the algorithm described in [25, 22],
the same one used for the proposed mask estimation.

The results obtained for the three evaluated algorithms
and the oracle mask are shown in Fig. 4, where the STOI
improvement is plotted versus the STOI of the noisy speech.
Fig. 4(a) shows the results for all 12 seen noise types used
for the training and Fig. 4(b) for 10 noise types of the ITU-T
P.501 standard [30] and 3 noise types from RSG-10 database
[29] which were not used for training. Each data point gives
the average STOI value and average STOI improvement over
100 test utterances using a specific noise type at a specific
SNR. The straight lines represent the least-squares linear fit
to the data points for each speech enhancement method. On
average, in both seen and unseen conditions, the MMSE (blue
triangles, solid blue line) and the spectral subtraction (pink
circles, pink dashed line) algorithms do not change the input
STOI value substantially. This is consistent with the results
in [31], where no speech enhancement system was found to
improve intelligibility significantly.

However, in Fig. 4(a) we can observe how the proposed
mask is consistently able to improve the STOI of noisy speech
for values below 0.8. It is worth noting that when the STOI
value is above 0.7, the speech intelligibility is very high [19]
and the impact on intelligibility of small changes to the STOI
score will be insignificant. In particular, for noisy speech
STOI values above 0.9, the small decreases in STOI intro-
duced by our proposed algorithm will not affect intelligibility.
The oracle UTBM mask has similar performance to the esti-
mated mask for high STOI values while providing a STOI
improvement of approximately 0.25 for an initial STOI of
0.5 versus the 0.15 improvement of the estimated mask. The
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(b) Unseen noise types
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Fig. 4. STOI improvement using the proposed algorithm versus
the STOI of the noisy signal for (a) seen noise types and (b) unseen
noise types. The STOI values are the average over 100 utterances.
The straight lines in the figure are least-squares linear fits to the data
points.

results on unseen noise types are shown in Fig. 4(b). Due
to the limited number of noises used for the training, our
algorithm does not generalize well on all types of unseen
noise and the results (indicated by red x) are not as consistent
as for the seen noises. However, the proposed algorithm trend,
indicated by the linear fit to the data (red dash-dot line), is to
increase the STOI value when the input STOI is low, although
the average increase is about half that obtained on seen noise
types. We see that the oracle mask results (indicated by green
+) are very similar to those shown in Fig. 4(a) for the seen
noise types.

6. CONCLUSIONS

In this paper we have presented a mask-based algorithm that
is able to increase the predicted intelligibility calculated using
the objective STOI measure. We extract 145 features per
frame from the noisy speech using robust algorithms and train
a regression tree for each frequency band using the UTBM
as a target. The proposed mask estimation algorithm was
evaluated on the TIMIT test set with a variety of noise types.
We conclude that the proposed algorithm is able to increase
the predicted intelligibility for noise types seen in the training
while maintaining or increasing the predicted intelligibility on
unseen noise types.
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