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ABSTRACT

We propose a speech enhancement algorithm that applies a
Kalman filter in the modulation domain to the output of a
conventional enhancer operating in the time-frequency do-
main. We show that the prediction residual signal of the spec-
tral amplitude errors at the output of the baseline MMSE en-
hancer do not follow a Gaussian distribution. Accordingly, the
Kalman filter used in our enhancement algorithm combines
a colored noise model with a Gaussian mixture model of the
residual noise. We evaluate the performance of the speech en-
hancement algorithm on the core TIMIT test set and demon-
strate that it gives consistent performance improvements over
the baseline enhancer and over a previously proposed Kalman
filter post-processor.

Index Terms— speech enhancement, post-processing,
Kalman filter, Gaussian mixture model, modulation domain

1. INTRODUCTION

Over the past decades, many speech enhancement algo-
rithms have been proposed in order to eliminate or reduce
unwanted background noise. Enhancement algorithms in the
time-frequency domain, such as [1] and [2], can be effective
in reducing the noise and improving the signal-to-noise ratio
(SNR) but they also distort the speech and introduce spurious
artefacts known as musical noise. In order to solve this prob-
lem, several post-processing methods have been proposed
that either filter the time-frequency gain function used within
the enhancer or else act directly on its output signal. In [3],
median filtering is applied to time-frequency cells that are
identified as having a low probability of containing speech
energy in order to eliminate the isolated peaks that charac-
terise musical noise and in [4] musical noise in frames with
low SNR is attenuated by smoothing the gain function of the
baseline enhancer. Other techniques, such as cepstral smooth-
ing [5] and Kalman filtering (KF) [6] have also been used to
post-process the minimum mean square error (MMSE) spec-
tral amplitude estimator [2] to reduce the musical noise and
improve the quality of the enhanced speech.

The use of a KF was introduced in [7] for speech en-
hancement assuming the noise was white and in [8] this was
later extended to colored noise. Recent interest in performing
speech enhancement in the modulation domain [9, 10, 11] in-
cludes the algorithm described in [12] which applies the KF
to the short-time modulation domain spectral amplitudes. The
assumption made in the KF is that the prediction residual sig-
nals of both speech and noise are Gaussian distributed with
zero-mean. However, we have found that the prediction resid-
ual signal of the spectral amplitude errors in the MMSE en-
hanced speech signal do not follow a Gaussian distribution.
Therefore, extending the algorithm in [6] , we propose in this
paper a KF post-processor in the modulation domain using a
Gaussian mixture model (GMM) of the noise which is col-
ored due to the overlap between frames. The rest of the paper
is organized as follows: Sec. 2 gives the motivation and the
probabilistic derivation of the GMM Kalman filter for colored
noise and also describes the update procedure for the model
parameters. In Secs 3 and 4, we evaluate the proposed algo-
rithm and give our conclusions.

2. GMM KALMAN FILTER

2.1. Distribution of prediction error

In the conventional KF, the prediction residual signal of both
speech and noise are assumed Gaussian distributed. How-
ever, after processing noisy speech by an MMSE enhancer,
most of the stationary noise has been removed leaving behind
some residual noise together with musical noise artefacts es-
pecially where the input noise power was high [13]. Because
the musical noise is characterized by isolated spectral peaks
in the spectrogram, it is difficult to predict in the modulation
domain. As a result, the prediction errors associated with the
musical noise may be very large, and the overall distribution
of the prediction errors of the noise in the enhanced speech
does not follow a Gaussian distribution. To illustrate this, we
show in Fig. 1 the distribution of the normalized prediction
error of the spectral amplitude errors in the MMSE enhanced
speech in each time-frequency bin together with a fitted sin-
gle Gaussian distribution (in red) and a 3-mixture GMM (in
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Fig. 1. Distribution of the normalized prediction error of
the noise spectral amplitudes in MMSE-enhanced speech.
The prediction errors are normalized by the RMS power of
the noise predictor residual in the corresponding modulation
frame.

green). The histogram shows the distribution over all time-
frequency bins using the TIMIT core test set [14] corrupted
by additive car noise at SNRs between –10 and +15 dB us-
ing the framing parameters from Sec. 3. The estimated noise
amplitude trajectory in each frequency bin is represented by
an autoregressive model whose prediction error is normalized
by the root-mean-square (RMS) level of the noise predictor
residual in the corresponding modulation frame. From the
figure, we see that the overall prediction residual signal is not
zero mean and does not follow a Gaussian distribution.

Based on the empirical prediction errors, we have ex-
tended the conventional colored noise KF to incorporate
a GMM noise distribution. We use N (µ,⌃) to denote a
multivariate Gaussian distribution with mean vector µ and
covariance matrix ⌃ and use N (x;µ,⌃) for its probability
density at x.

2.2. Derivation of GMM Kalman Filter

The diagram of the proposed algorithm is shown in Fig. 2.
Following time-frequency domain enhancement, the spectral
amplitude of the short-time Fourier transform (STFT) at time
frame n and frequency bin k is given by Yn,k = Xn,k+Wn,k

where Xn,k is the amplitude of the clean speech signal and
Wn,k is the “noise” arising from a combination of acoustic
noise and the enhancement artefacts. The output from the KF
X̂n,k is combined with the noisy phase spectrum ✓n,k and
passed through an inverse-STFT (ISTFT) to create the out-
put speech x̂(t). In this and the next subsection we will give
the derivation of the GMM Kalman filter (GMMKF) and the
parameter update procedure. Because each frequency bin, k,
is processed independently and for clarity, we omit the fre-
quency index below.

MMSE

noisy speech
 speech 

Kalman Filter

    Train initial
GMM parameters

GMM parameters update
&
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Fig. 2. Diagram of the proposed GMM KF algorithm

Our system model is

zn+1 = Anzn +Dqn (1)

yn+1 = c

T
zn+1 (2)

where zn = [xn · · ·xn�N+1 wn · · ·wn�M+1]T is the N+M

dimensional state vector for both the speech, xn, and noise,
wn, and qn = [un vn]T contains the corresponding prediction
residuals. The (N +M)⇥ (N +M) transition matrix, An, is

in the form An =


Ta 0
0 Tb

�
where Ta and Tb are the

transition matrices for speech and noise respectively and Ta

is given by Ta =


�aT

n

I 0

�
where an is the vector of linear

prediction (LPC) coefficients for the speech. Tb and bn are
the corresponding quantities for the noise. The (N +M) ⇥ 2

matrix D is all zero except for d1,1 = dN+1,2 = 1. Likewise
the column vector c is all zero except for c1 = cN+1 = 1.

We represent the prediction residuals as a 2-element vec-
tor qn with a Gaussian mixture distribution of J mixtures as

qn ⇠
JX

j=1

�(j)
n N (µ(j)

n ,⌃(j)
n ) (3)

As in a conventional Kalman filter, we assume that the state
vector at time n based on observations up to time n is Gaus-
sian distributed zn s N (zn|n,Pn|n). Following the time
update, the distribution of zn+1|n becomes a Gaussian mix-
ture

P
j �

(j)
n N (z(j)n+1|n, P

(j)
n+1|n) where

z(j)n+1|n = Anzn|n +Dµ(j)
n

P(j)
n+1|n = AnPn|nA

T
n +D⌃(j)

n DT

Applying the constraint c

T
zn+1 = yn+1 changes the

Gaussian mixture parameters as follows [15]

k(j)
n+1 = P(j)

n+1|nc(c
TP(j)

n+1|nc)
�1 (4)

z(j)n+1|n+1 = z(j)n+1|n + k(j)
n+1(yn+1 � cT z(j)n+1|n) (5)

P(j)
n+1|n+1 = P(j)

n+1|n � k(j)
n+1c

TP(j)
n+1|n (6)
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Finally, we collapse the GMM into a single Gaussian for
the estimation of the state vector at time n+ 1

⇠
(j)
n+1 =

�
(j)
n N (yn+1; c

T z(j)n+1|n, c
TP(j)

n+1|nc)
P

j �
(j)
n N (yn+1; cT z

(j)
n+1|n, c

TP(j)
n+1|nc)

(7)

zn+1|n+1 =
JX

j=1

⇠
(j)
n+1z

(j)
n+1|n+1 (8)

Pn+1|n+1 =
JX

j=1

⇠
(j)
n+1(P

(j)
n+1|n+1 + z(j)n+1|n+1(z

(j)
n+1|n+1)

T )

� zn+1|n+1z
T
n+1|n+1 (9)

The quantity ⇠
(j)
n+1 in (7) represents the posterior probabil-

ity that zn+1 belongs to mixture j.
Thus we can use the new Kalman filter to process the

residual noise in the MMSE enhanced speech because the
GMM can be used to model the spectral amplitude errors in
the enhanced speech.

2.3. Update of parameters

The spectral amplitudes, Yn,k are divided into overlapping
modulation frames and autocorrelation LPC analysis [16] is
performed in each modulation frame to obtain a vector of
speech prediction coefficients, a, and a residual power ⇢2a.
To obtain the corresponding noise coefficients, the sequence
of spectral amplitudes, Yn,k is passed through a noise power
spectrum estimator [17] before performing LPC analysis to
obtain the noise predictor coefficients, b, and the residual
power ⇢2b .

Within the noise GMM, (3), the speech residual compo-
nent un ⇠ N (0, ⇢2a) is identical in all mixture components
but the normalized noise residual en = vn/⇢b is modeled as
a Gaussian mixture en ⇠

P
j �

(j)
n N (m(j)

n ,�
2(j)
j ). We model

the normalized residual rather than the residual itself so that
the GMM parameters are independent of the speech and noise
amplitudes.

In order to update the GMM parameters we apply the
noise predictor coefficients, bn, from the current modula-
tion frame to the sequence of estimated noise spectral ampli-
tudes to obtain a noise prediction error en⇢b for each acoustic
frame n. The probability that en+1 comes from model j is
given by

p
(j)
n+1 =

�
(j)
n N (en+1;m

(j)
n ,�

2(j)
n )

P
j �

(j)
n N (en+1;m

(j)
n ,�

2(j)
n )

(10)

Because now the probability of the model given the obser-
vation error is known, we can update in each acoustic frame
the effective number of observations (O(j)), the sum of the
observations (S(j)) and the sum of the squared observations
(T (j)) as O

(j)
n+1 = p

(j)
n+1 + �O

(j)
n , S(j)

n+1 = p
(j)
n+1en+1 + �S

(j)
n

and T
(j)
n+1 = p

(j)
n+1e

2
n+1 + �T

(j)
n , where � is a forgetting factor.

The parameters of each model can now be updated adaptively
as [18]

m
(j)
n+1 = S

(j)
n+1/O

(j)
n+1 (11)

�
2(j)
n+1 = T

(j)
n+1/O

(j)
n+1 �m

2(j)
n+1 (12)

�
(j)
n+1 =

O
(j)
n+1P

j O
(j)
n+1

= (1� �)O(j)
n+1 (13)

To initialize the model, we train a GMM with parame-
ters m

(j)
0 , �2(j)

0 and �
(j)
0 offline on a large amount of data

and set O
(j)
0 = m

(j)
0 /(1 � �), S(j)

0 = m
(j)
0 O

(j)
0 and T

(j)
0 =

(�2(j)
0 + m

2(j)
0 )O(j)

0 . To ensure stability of the update proce-
dure, we impose lower bounds on p(j) and �2(j) to prevent
them becoming zero.

3. IMPLEMENTATION AND EVALUATION

3.1. Stimuli of experiments

In this section, we compare the performance of the proposed
Kalman filter post-processor based on a GMM (KFGM) with
the baseline MMSE enhancer from [2] and the modulation-
domain Kalman filter post-processor (KFMD) from [6]. The
initial GMM parameters are trained using a subset in the train-
ing set of the TIMIT database and using speech corrupted by
white noise. The remaining algorithm parameters were cho-
sen to optimize performance on a development subset of the
TIMIT training database. The number of mixtures used is set
as J = 3 and we select an acoustic frame length 16 ms with
a 4 ms increment which gives a 250 Hz sampling frequency
in the modulation domain. The speech and noise LPC mod-
els are determined from a modulation frame of 128 ms (32
acoustic frames) with a 16 ms frame increment and the model
orders in the KFGM and KFMD algorithms for the speech
and noise are N = 3 and M = 4 respectively. In the ex-
periments, we use the core test set from the TIMIT database
which contains 16 male and 8 female speakers each reading
8 distinct sentences (totalling 192 sentences) and the speech
is corrupted by the F16 noise from the RSG-10 database [19]
and street noise from the ITU-T test signals database [20] at
�10,�1, 0, 5, 10 and 15 dB global SNR. A Hamming win-
dow is used in the STFT analysis and synthesis and the for-
getting factor � is set as � = 0.9.

3.2. Performance evaluation

The performance of the algorithms is evaluated using both
segmental SNR (segSNR) and the perceptual evaluation of
speech quality (PESQ) measure defined in ITU-T P.862. All
the measurement values are averaged over the 192 sentences
in the TIMIT core test set. The average segSNR for the cor-
rupted speech, baseline MMSE enhancer, the KFMD algo-
rithm and the proposed KFGM algorithm is shown for F16
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Fig. 3. Average segmental SNR of enhanced speech after
processing by three algorithms versus the global SNR of the
input speech corrupted by F16 aircraft noise (KFGM: pro-
posed Kalman Filter post-processor with a Gaussian Mixture
noise model; KFMD: modulation-domain Kalman filter post-
processor from [6]; MMSE: MMSE enhancer from [2]).

noise in Fig. 3 as a function of the global SNR of the noisy
speech. We see that at 15 dB global SNR all the algorithms
give the same improvement in segSNR of about 3 dB. How-
ever, at 0 dB global SNR the proposed algorithm outperforms
both reference algorithms by about 4 dB and 6 dB respec-
tively. The equivalent graphs for street noise are shown in
Fig. 4. We see that the overall trend in the results is the same
and at 0 dB the proposed algorithm gives an additional im-
provement of 1.5 dB. The corresponding graphs for PESQ
are shown in Fig. 5 for F16 noise and in Fig. 6 for street
noise. In Figs 5 and 6, the average PESQ scores mirror the
results seen for the segSNR. However, at high SNRs the pro-
posed algorithm is also able to improve the PESQ, and we ob-
tain an improvement of approximately 0.15 and 0.25 over the
KFMD algorithm and MMSE enhancer respectively over a
wide range of SNRs. In addition, informal listening tests also
suggest that the proposed post-processing method is able to
reduce the musical noise introduced by the MMSE enhancer.

4. CONCLUSION

In this paper we propose a new post-processor in the modu-
lation domain using a GMM for modeling prediction error of
the noise in the output of a conventional spectral amplitude
MMSE enhancer. We have derived a KF that incorporates
a GMM noise model and have also presented a method for
adaptively updating the GMM parameters. We have evalu-
ated our proposed post-processor using segSNR and PESQ
and shown that the proposed method results in consistently
improved performance when compared to both the base-
line MMSE enhancer and a modulation-domain KF post-
processor. The improvement in segmental SNR is over 4 dB
at a global SNR of 0 dB while the PESQ score is increased
by about 0.15 across a wide range of input global SNRs.
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Fig. 4. Average segmental SNR of enhanced speech after pro-
cessing by three algorithms versus the global SNR of the input
speech corrupted by street noise.
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Fig. 5. Average PESQ quality of enhanced speech after pro-
cessing by three algorithms versus the global SNR of the input
speech corrupted by F16 aircraft noise.
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Fig. 6. Average PESQ quality of enhanced speech after pro-
cessing by three algorithms versus the global SNR of the input
speech corrupted by street noise.
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