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ABSTRACT

Representations in the auditory cortex might be based on
mechanisms similar to the visual ventral stream; modules for
building invariance to transformations and multiple layers for
compositionality and selectivity. In this paper we propose the
use of such computational modules for extracting invariant
and discriminative audio representations. Building on a the-
ory of invariance in hierarchical architectures, we propose a
novel, mid-level representation for acoustical signals, using
the empirical distributions of projections on a set of templates
and their transformations. Under the assumption that, by
construction, this dictionary of templates is composed from
similar classes, and samples the orbit of variance-inducing
signal transformations (such as shift and scale), the resulting
signature is theoretically guaranteed to be unique, invariant
to transformations and stable to deformations. Modules of
projection and pooling can then constitute layers of deep net-
works, for learning composite representations. We present the
main theoretical and computational aspects of a framework
for unsupervised learning of invariant audio representations,
empirically evaluated on music genre classification.

Index Terms— Invariance, Deep Learning, Convolu-
tional Networks, Auditory Cortex, Music Classification

1. INTRODUCTION

The representation of music signals, with the goal of learn-
ing for recognition, classification, context-based recommen-
dation, annotation and tagging, mood/theme detection, sum-
marization etc., has been relying on techniques from speech
analysis. For example, Mel-Frequency Cepstral Coefficients
(MFCCs), a widely used representation in automatic speech
recognition, is computed from the Discrete Cosine Transform
of Mel-Frequency Spectral Coefficients (MFSCs). The as-
sumption of signal stationarity within an analysis window is
implicitly made, thus dictating small signal segments (typi-
cally 20-30ms) in order to minimize the loss of non-stationary
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structures for phoneme or word recognition. Music signals in-
volve larger scale structures though (on the order of seconds)
that encompass discriminating features, apart from musical
timbre, such as melody, harmony, phrasing, beat, rhythm etc.

The acoustic and structural characteristics of music have
been shown to require a distinct characterization of structure
and content [1], and quite often a specialized feature design.
A recent critical review of features for music processing [2]
identified three main shortcomings: a) the lack of scalability
and generality of task-specific features, b) the need for higher-
order functions as approximations of nonlinearities, c) the dis-
crepancy between short-time analysis with larger, temporal
scales where music content, events and variance reside.

Leveraging on a theory for invariant representations [3]
and an associated computational model of hierarchies of pro-
jections and pooling, we propose a hierarchical architecture
that learns a representation invariant to transformations and
stable [4], over large analysis frames. We demonstrate how a
deep representation, invariant to typical transformations, im-
proves music classification and how unsupervised learning is
feasible using stored templates and their transformations.

2. RELATED WORK

Deep learning and convolutional networks (CNNs) have been
recently applied for learning mid- and high- level audio rep-
resentations, motivated by successes in improving image
and speech recognition. Unsupervised, hierarchical audio
representations from Convolutional Deep Belief Networks
(CDBNs) have improved music genre classification over
MFCC and spectrogram-based features [5]. Similarly, Deep
Belief Networks (DBNs) were applied for learning music
representations in the spectral domain [6] and unsupervised,
sparse-coding based learning for audio features [7].

A mathematical framework that formalizes the compu-
tation of invariant and stable representations via cascaded
(deep) wavelet transforms has been proposed in [4]. In this
work, we propose computing an audio representation through
biologically plausible modules of projection and pooling,
based on a theory of invariance in the ventral stream of the
visual cortex [3]. The proposed representation can be ex-
tended to hierarchical architectures of “layers of invariance”.
An additional advantage is that it can be applied to building
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invariant representations from arbitrary signals without ex-
plicitly modeling the underlying transformations, which can
be arbitrarily complex but smooth.

Representations of music directly from the temporal or
spectral domain can be very sensitive to small time and fre-
quency deformations, which affect the signal but not its mu-
sical characteristics. In order to get stable representations,
pooling (or aggregation) over time/frequency is applied to
smooth-out such variability. Conventional MFSCs use filters
with wider bands in higher frequencies to compensate for the
instability to deformations of the high-spectral signal com-
ponents. The scattering transform [8, 9] keeps the low pass
component of cascades of wavelet transforms as a layer-by-
layer average over time. Pooling over time or frequency is
also crucial for CNNs applied to speech and audio [5, 10].

3. UNSUPERVISED LEARNING OF INVARIANT
REPRESENTATIONS

Hierarchies of appropriately tuned neurons can compute sta-
ble and invariant representations using only primitive com-
putational operations of high-dimensional inner-product and
nonlinearities [3]. We explore the computational principles of
this theory in the case of audio signals and propose a multi-
layer network for invariant features over large windows.

3.1. Group Invariant Representation

Many signal transformations, such as shifting and scaling can
be naturally modeled by the action of a groupG. We consider
transformations that form a compact group, though, as will be
shown, the general theory holds (approximately) for a much
more general class (e.g., smooth deformations). Consider a
segment of an audio signal x ∈ Rd. For a representation µ(x)
to be invariant to transformation group G, µ(x) = µ(gx) has
to hold ∀g ∈ G. The orbitOx is the set of transformed signals
gx,∀g ∈ G generated from the action of the group on x, i.e.,
Ox = {gx ∈ Rd, g ∈ G}. Two signals x and x′ are equiv-
alent if they are in the same orbit, that is, ∃g ∈ G, such that
gx = x′. This equivalence relation formalizes the invariance
of the orbit. On the other hand, the orbit is discriminative
in the sense that if x′ is not a transformed version of x, then
orbits Ox and Ox′ should be different.

Orbits, although a convenient mathematical formalism,
are difficult to work with in practice. When G is compact, we
can normalize the Haar measure on G to get an induced prob-
ability distribution Px on the transformed signals, which is
also invariant and discriminative. The high-dimensional dis-
tribution Px can be estimated within small ε in terms of the set
of one dimensional distributions induced from projecting gx
onto vectors on the unit sphere, following Cramér-Wold The-
orem [11] and concentration of measures [3]. Given a finite
set of randomly-chosen, unit-norm templates t1, . . . , tK , an
invariant signature for x is approximated by the set of P〈x,tk〉,
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Fig. 1. Illustration of a simple-complex cell module
(projections-pooling) that computes an invariant signature
component for the k-th template.

by computing 〈gx, tk〉,∀g ∈ G, k = 1, . . . ,K and estimating
the one dimensional histograms µk(x) = (µkn(x))Nn=1. For a
(locally) compact group G,

µkn(x) =

∫
G

ηn
(
〈gx, tk〉

)
dg (1)

is the n-th histogram bin of the distribution of projections
onto the k-th template, implemented by the nonlinearity
ηn(·). The final representation µ(x) ∈ RNK is the concate-
nation of the K histograms.

Such a signature is impractical because it requires access
to all transformed versions gx of the input x. The simple
property 〈gx, tk〉 = 〈x, g−1tk〉, allows for a memory-based
learning of invariances; instead of all transformed versions
of input x, the neurons can store all transformed versions of
all the templates gtk, g ∈ G, k = 1, . . . ,K during training.
The implicit knowledge stored in the transformed templates
allows for the computation of invariant signatures without ex-
plicit understanding of the underlying transformation group.

For the visual cortex, the templates and their transformed
versions could be learned from unsupervised visual experi-
ence through Hebbian plasticity [12], assuming temporally
adjacent images would typically correspond to (transforma-
tions of) the same object. Such memory-based learning might
also apply to the auditory cortex and audio templates could be
observed and stored in a similar way. In this paper, we sample
templates randomly from a training set and transform them
explicitly according to known transformations.

3.2. Invariant Feature Extraction with Cortical Neurons

The computations for an invariant representation can be car-
ried out by primitive neural operations. The cortical neurons
typically have 103 ∼ 104 synapses, in which the templates
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can be stored in the form of synaptic weights. By accumu-
lating signals from synapses, a single neuron can compute a
high-dimensional dot-product between the input signal and a
transformed template.

Consider a module of simple and complex cells [13] as-
sociated with template tk, illustrated in Fig. 1. Each sim-
ple cell stores in its synapses a single transformed template
g1t

k, . . . , gM t
k, where M = |G|. For an input signal, the

cells compute the set of inner products {〈x, gtk〉},∀g ∈ G.
Complex cells accumulate those inner products and pool over
them using a nonlinear function ηn(·). For families of smooth
step functions (sigmoids)

ηn(·) = σ(·+ n∆), (2)

the n-th cell could compute the n-th bin of an empirical Cu-
mulative Distribution Function for the underlying distribution
Eq. (1), with ∆ controlling the size of the histogram bins.

Alternatively, the complex cells could compute moments
of the distribution, with ηn(·) = (·)n corresponding to the
n-th order moment. Under mild assumptions, the moments
could be used to approximately characterize the underlying
distribution. Since the goal is an invariant signature instead
of a complete distribution characterization, a finite number of
moments would suffice. Notable special cases include the en-
ergy model of complex cells [14] for n = 2 and mean pooling
for n = 1.

The computational complexity and approximation accu-
racy (i.e., finite samples to approximate smooth transforma-
tion groups and discrete histograms to approximate continu-
ous distributions) grows linearly with the number of transfor-
mations per group and number of histogram bins. In the com-
putational model these correspond to number of simple and
complex cells, respectively, and can be carried out in parallel
in a biological or any parallel-computing system.

3.3. Extensions: Partially Observable Groups and Non-
group Transformations

For groups that are only observable within a window over the
orbit, i.e. partially observable groups, or pooling over a subset
of a finite groupG0 ⊂ G (not necessarily a subgroup), a local
signature associated with G0 can be computed as

µkn(x) =
1

V0

∫
G0

ηn
(
〈gx, tk〉

)
dg (3)

where V0 =
∫
G0
dg is a normalization constant to define a

valid probability distribution. It can be shown that this repre-
sentation is partially invariant to a restricted subset of trans-
formations [3], if the input and templates have a localization
property. The case for general (non-group) smooth trans-
formations is more complicated. The smoothness assump-
tion implies that local linear approximations centered around
some key transformation parameters are possible, and for lo-
cal neighborhoods, the POG signature properties imply ap-
proximate invariance [3].

4. MUSIC REPRESENTATION AND GENRE
CLASSIFICATION

The repetition of the main module on multilayer, recursive
architectures, can build layer-wise invariance of increasing
range and an approximate factorization of stacked transfor-
mations. In this paper, we focus on the latter and propose a
multilayer architecture for a deep representation and feature
extraction, illustrated in Fig. 2. Different layers are tuned to
impose invariance to audio changes such as warping, local
translations and pitch shifts. We evaluate the properties of the
resulting audio signature for musical genre classification, by
cascading layers while comparing to “shallow” (MFCC) and
“deep” (Scattering) representations.

4.1. Genre Classification Task and Baselines

The GTZAN dataset [15] consists of 1000 audio tracks each
of 30 sec length, some containing vocals, that are evenly di-
vided into 10 music genres. To classify tracks into genres us-
ing frame level features, we follow a frame-based, majority-
voting scheme [8]; each frame is classified independently and
a global label is assigned using majority voting over all track
frames. To focus on the discriminative strength of the repre-
sentations, we use one-vs-rest multiclass reduction with regu-
larized linear least squares as base classifiers [16]. The dataset
is randomly split into a 80:20 partition of train and test data.

Results for genre classification are shown in Table 1. As
a baseline, MFCCs computed over longer (370 ms) windows
achieve a track error rate of 67.0%. Smaller-scale MFCCs can
not capture long-range structures and under-perform when
applied to music genre classification [8], while longer win-
dows violate the assumption of signal stationarity, leading to
large information loss. The scattering transform adds layers
of wavelet convolutions and modulus operators to recover the
non-stationary behavior lost by MFCCs [4, 8, 9]; it is both
translation-invariant and stable to time warping. A second-
order scattering transform representation, greatly decreases
the MFCC error rate at 24.0% The addition of higher-order
layers improves the performance, but only slightly.

State-of-the-art results for the genre task combine mul-
tiple features and well-adapted classifiers. On GTZAN1, a
9.4% error rate is obtained by combining MFCCs with stabi-
lized modulation spectra [17]; combination of cascade filter-
banks with sparse coding yields a 7.6% error [18]; scattering
transform achieves an error of 8.1% when combining adap-
tive wavelet octave bandwidth, multiscale representation and
all-pair nonlinear SVMs [9].

4.2. Multilayer Invariant Representation for Music

At the base layer, we compute a log-spectrogram represen-
tation using a short-time Fourier transform in 370 ms win-
dows, in order to capture long-range audio signal structure.

1Since there is no standard training-testing partition of the GTZAN
dataset, error rates may not be directly comparable.
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Wave Signal Spectrogram invariant to warping invariant to local translation invariant to pitch shift

Fig. 2. Deep architecture for invariant feature extraction with cascaded transform invariance layers.

As shown Table 1, the error rate from this input layer alone is
35.5%, better than MFCC, but worse than the scattering trans-
form. This can be attributed to the instability of the spectrum
to time warping at high frequencies [9].

Instead of average-pooling over frequency, as in a mel-
frequency transformation (i.e., MFSCs), we handle instability
using mid-level representations built for invariance to warping
(Sec. 3). Specifically, we add a second layer to pool over pro-
jections on warped templates on top of the spectrogram layer.
The templates are audio segments randomly sampled from the
training data. For each template tk[n], we explicitly warp the
signal as gεtk[n] = tkε [n] = tk[(1+ε)n] for a large number of
ε ∈ [−0.4, 0.4]. We compute the normalized dot products be-
tween input and templates (projection step), collect values for
each template group k and estimate the first three moments
of the distribution for k (pooling step). The representation
(µk(x))K1 at this layer is then the concatenation of moments
from all template groups. An error rate of 22.0% is obtained
with this representation, a significant improvement over the
base layer representation, that notably outperforms both the
2nd and 3rd order scattering transform.

In a third layer, we handle local translation invariance
by explicitly max pooling over neighboring frames. A neigh-
borhood of eight frames is pooled via a component-wise max
operator. To reduce the computational complexity, we do sub-
sampling by shifting the pooling window by three frames.
This operation, similar to the spatial pooling in HMAX [19]
and CNNs [5, 10, 20], could be seen as a special case in our
framework: a receptive field covers neighboring frames with
max pooling; each template corresponds to an impulse in one
of its feature dimensions and templates are translated in time.
With this third layer representation, the error rate is further
reduced to 16.5%.

A fourth layer performs projection and pooling over
pitch-shifted templates, in their third-layer representations,
randomly sampled from the training set. Although the per-
formance drops slightly to 18.0%, it is still better than the
compared methods. This drop may be related to several open
questions around hierarchical architectures for invariance:
a) should the classes of transformations be adapted to specific
domains, e.g., the invariant to pitch-shift layer, while natu-
ral for speech signals, might not be that relevant for music
signals; b) how can one learn the transformations or obtain

Feature Error Rates (%)

MFCC 67.0

Scattering Transform (2nd order) 24.0
Scattering Transform (3rd order) 22.5
Scattering Transform (4th order) 21.5

Log Spectrogram 35.5
Invariant (Warp) 22.0
Invariant (Warp+Translation) 16.5
Invariant (Warp+Translation+Pitch) 18.0

Table 1. Genre classification results on GTZAN with one-vs-
rest reduction and linear ridge regression binary classifier.

the transformed templates automatically from data (in a su-
pervised or unsupervised manner); c) how many layers are
enough when building hierarchies; d) under which conditions
can different layers of invariant modules be stacked.

The theory applies nicely in a one-layer setting. Also
when the transformation (and signature) of the base layer
is covariant to the upper layer transformations, a hierarchy
could be built with provable invariance and stability [3].
However, covariance is usually a very strong assumption in
practice. Empirical observations such as these can provide
insights on weaker conditions for deep representations with
theoretical guarantees on invariance and stability.

5. CONCLUSION

The theory of stacking invariant modules for a hierarchical,
deep network is still under active development. Currently,
rather strong assumptions are needed to guarantee an invariant
and stable representation when multiple layers are stacked,
and open questions involve the type, number, observation and
storage of the transformed template sets (learning, updating
etc.). Moreover, systematic evaluations remain to be done for
music signals and audio representations in general. Towards
this, we will test the performance limits of this hierarchical
framework on speech and other audio signals and validate the
representation capacity and invariance properties for different
recognition tasks. Our end-goal is to push the theory towards
a concise prediction of the role of the auditory pathway for
unsupervised learning of invariant representations and a for-
mally optimal model for deep, invariant feature learning.
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