
FROM MUSIC AUDIO TO CHORD TABLATURE: TEACHING DEEP CONVOLUTIONAL
NETWORKS TO PLAY GUITAR

Eric J. Humphrey and Juan P. Bello

Music and Audio Research Laboratory (MARL) @ NYU

ABSTRACT

Automatic chord recognition is conventionally tackled as a
general music audition task, where the desired output is a
time-aligned sequence of discrete chord symbols, e.g. CMaj7,
Esus2, etc. In practice, however, this presents two related
challenges: one, the act of decoding a given chord sequence
requires that the musician knows both the notes in the chord
and how to play them on some instrument; and two, chord
labeling systems do not degrade gracefully for users without
significant musical training. Alternatively, we address both
challenges by modeling the physical constraints of a guitar to
produce human-readable representations of music audio, i.e
guitar tablature via a deep convolutional network. Through
training and evaluation as a standard chord recognition sys-
tem, the model is able to yield representations that require
minimal prior knowledge to interpret, while maintaining re-
spectable performance compared to the state of the art.

Index Terms— deep networks, chord recognition, repre-
sentation learning, guitar tablature

1. INTRODUCTION

Given sustained effort and interest by the research commu-
nity, automatic chord recognition is now one of the semi-
nal tasks in music informatics. As the state of the art has
advanced, most approaches adopt the same basic architec-
ture: first, acoustic features, known as pitch class profiles
or chroma, are computed from short-time observations of an
audio signal [1]; then, Gaussian mixture models (GMMs) are
fit to each chord class in the target vocabulary, typically 12
Major, 12 Minor, and one waste-basket “no-chord” class [2];
finally, frame-wise predictions are decoded using a Hidden
Markov Model with transition probabilities computed from
the same data used for training the GMMs [3]. Alternatively,
deep learning methods have recently garnered attention for
chord recognition, such as convolutional neural networks
(CNNs)[4] and recurrent neural networks (RNNs) [5].

Generally speaking, the majority of prior research in au-
tomatic chord recognition is based on the two-fold premise
that (a) this is fundamentally a classification problem and (b)

This material is based upon work supported by the National Science
Foundation under grant IIS-0844654.

C G:7 A:min

Fig. 1. A chord label sequence (top), traditional staff notation
(middle), and guitar tablature (bottom) of the same musical
information, in decreasing levels of abstraction.

the ideal output is a time-aligned sequence of singular chord
names, motivated by the spirit of empowering anyone to play
any song. Modern online guitar communities, however, have
continued to place a high demand on guitar tablature, given
the prevalence of user-curated websites like Ultimate Gui-
tar1, which sees an average 1.7M unique visitors in the US
per month2. As illustrated in Figure 1, guitar tablature is a
form of music notation that requires minimal knowledge to
interpret because the representation directly maps notes in a
chord to frets on a guitar. Therefore, it is an inherent de-
sign challenge of human-facing expert systems that the output
must be easily interpreted by the user; and, more importantly,
graceful degradation is a function of that user’s capacity to
understand and recover from errors. Though some previous
work embraces this position in the realm of transcribing gui-
tar recordings [6] or arranging music for guitar [7], there is,
to our knowledge, no existing work in estimating guitar tab-
lature directly from polyphonic recordings.

This paper presents a novel approach to bootstrapping the
task of automatic chord recognition to develop an end-to-end
system capable of representing polyphonic music audio as
guitar tablature by modeling the mechanics of the guitar with
a deep convolutional network. To enforce playability, a finite
vocabulary of chord shape templates are defined and the net-
work is trained by minimizing the distance between its output
and the best template for an observation. Our experiments
show that the model achieves the goal of faithfully mapping

1http://www.ultimate-guitar.com/
2Based on Compete.com analytics data, accessed on 2 November, 2013.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7024

audio to a fretboard representation, while still performing re-
spectably as a chord recognition system. The output of the
network is human-readable, allowing the system to be used
by anyone regardless of musical ability. Additionally, trained
networks are not constrained to any particular vocabulary, and
are able to represent previously unseen chord shapes.

2. PROPOSED SYSTEM

2.1. Input Representation

The first stage of our system is a constant-Q filterbank [8],
motivated by two reasons. First, a filterbank frontend greatly
reduces the dimensionality of the input data. Second, the
constant-Q transform is linear in time and pitch, a property
that can be exploited by a convolutional architecture to sim-
plify the learning task. Acting as multi-band automatic gain
control, local contrast normalization is then applied to the
time-frequency representation, as outlined in [9], with a slight
modification to the smoothing kernel. Typically the kernel
used to low-pass filter the representation is a symmetric, trun-
cated Gaussian in both dimensions, but we instead use a half-
Hanning window in time to mimic the precedence effect and
reduce phase delay.

2.2. Designing a Fretboard Model

Deep trainable networks have proven to be a versatile, power-
ful, and practical approach to solving complex machine learn-
ing problems in a variety of fields. A deep network transforms
an input Xin into an output Zout via a composite nonlinear
function F (·|Θ) given the parameter set Θ, often realized as
a cascade of L simpler nonlinear functions fl(·|θl), referred
to as layers, indexed by l:

F (Xin|Θ) = fL−1(...f1(f0(Xin|θ0)|θ1))...|θL−1) (1)

such that F = [f0, f1, ...fL−1] is the set of layer functions,
Θ = [θ0, θ1, ...θL−1] is the corresponding set of layer param-
eters, and the output of one layer is passed as the input to
the next, as Xl+1 = Zl. Here, based on previous experience
[4], we define our deep network with L = 4; diagrammed in
Figure 2, the first two layers are convolutional, the third is a
fully connected matrix product, and the fourth is a fully con-
nected tensor product with a variant of the softmax operation,
the details of which will be addressed in turn.

The two convolutional layers, fl for l ∈ [0, 1], are defined
as follows:

fl(Xl|θl) = pool(h(Xl ~W + b), p), θl = [W, b, p] (2)

The operator ~ is evaluated by convolving a 3D input tensor
X , known as a set of feature maps, with a 4D weight tensor
W , known as a set of kernels, followed by a vector bias term

Convolutional
Layers

Affine
Layer

6D-Softmax
Layer

RBF Layer
(Templates)

MSEConstant-Q
TFR

Fig. 2. Full diagram of the proposed network during training.

b. Note that the nonlinearity, denoted by h(·), is a rectified
linear unit, defined as h(x) = max(x, 0), and is common
to all layers. In this formulation, X has shape (N, d0, d1)
where N is the number of feature maps, and (d0, d1) is the
shape of each map, W has shape (M,N,m0,m1), where M
is the output number of feature maps, N aligns with the first
dimension of X , and (m0,m1) correspond to the feature di-
mensions of X . The bias b has length M , and the parameter
p is a two-element tuple that defines the neighborhood of the
max operator along the feature dimensions. Explicitly, the
convolution X̂m = X ~Wm can be written as follows:

X̂[a, b]m =

N∑
i=0

∞∑
j=−∞

∞∑
k=−∞

X[i, x, y]Wm[i, a− j, b− k] (3)

There are two primary benefits to using convolutional lay-
ers in a deep network; the number of parameters to learn
is greatly reduced because only a local neighborhood, rather
than the entire input, is processed by each kernel; and two, the
kernel is translated across all shifts of the input, allowing it to
encode the same feature regardless of absolute position; we
refer the interested reader to [9] for a more extensive review.
Having designed the input time-frequency representation to
be linear in both time and pitch, this property is particularly
useful in the task of chord recognition, where the quality of a
chord is defined by the relative intervals of its notes.

The third layer, f2, is a fully-connected, or affine, layer,
defined by the following:

f2(X2|θ2) = h(W •X2 + b), θi = [W, b] (4)

Here, the input X2 is flattened to a column vector of length L
and the dot-product is computed with a weight matrix W of
shape (M,L), followed by a vector bias term with length M .

Finally, the last layer, f3, that produces the fretboard-like
output, Zout, is defined similarly to f2, with the exception
that W is now a tensor, and the result of each matrix-vector
product is normalized by the softmax operation, defined as:

σ(x) =
exp(x)∑M

m=1 exp (x[m])
(5)

This layer is then given by the following:

7025

f3(X3|θ3) = σ(h(W [k] •X3 + b)), k ∈ [0 : K), θ3 = [W, b] (6)

Again, as in the previous layer, the input is a flat vector
of length N , but the weights are now a tensor of shape
(K,M,N) and the bias is a matrix with shape (K,M). This
layer is equivalent to performingK parallel affine transforma-
tions, each normalized by the softmax function. The intuition
for this design is straightforward; a guitar consists of a finite
number of strings, and, because the instrument is fretted, each
can only be pressed at one of a few discrete positions on the
neck. In this way, the K-parallel softmax surfaces behave
like probability mass functions for each string of the guitar,
and the output Zout is shaped (K,M).

3. GUITAR LESSONS FOR DEEP NETWORKS

3.1. Chord Shape Vocabulary

In this work,we consider five chord qualities (maj, min, maj7,
min7 and 7) in all 12 pitch classes, plus one no-chord class,
for a total of 61 classes. Chord shapes are designed such that
all qualities with the same root are formed in same neck po-
sition, as seen in the first column of Figure 3. Consequently,
all chords with the same root will be near-neighbors in this
representation, and we should expect that the most common
confusions will occur between qualities. Additionally, though
guitar chords can be voiced in variety of ways, here we con-
sider a single shape for each as an initial simplification.

3.2. Loss Function

Having designed a fretboard model, we turn our attention to
designing a loss function such that the machine can learn to
faithfully reproduce it. Following the lead of [10], we train the
network through an additional Radial Basis Function (RBF)
layer, given as follows:

L(Zout|WT) =
∑

(Zout −WT [i])2 (7)

where Zout is the output of the fretboard model, W is a ten-
sor of chord shape templates with shape (C,K,M), C is the
number of chord shapes, and i is the index of the correct class.
Note that these templates will impose the proper organiza-
tion on the output of the model, and thus remain fixed during
the learning process. Since these weights are constant, mini-
mizing this function does not require a contrastive penalty or
margin term to prevent it from collapsing, i.e. making all the
squared distances zero.

3.3. Training Strategy

For training the model, we use mini-batch stochastic gradi-
ent descent with a constant learning rate of 0.02. When sam-
pling the data, each observation is circularly shifted in pitch

randomly on the interval [-12,12]. This allows the variance
of each chord quality to be evenly distributed across classes,
effectively turning the task into a 6-class problem as each dat-
apoint contributes equally to pitch class. Empirically, we ob-
served that a mini-batch with a uniform quality distribution
led to poor discrimination of Major chords. This is likely due
to the wide intra-class variance of major chords, which we
offset by constituting batches with 3 Major observations for
1 of each other quality, and use a total batch size of 64 (24
Major, 8 Minor, 8 no-chord, etc).

4. METHODOLOGY

4.1. Dataset

Similar to [4], we conduct our work on a set of 475 music
recordings, consisting of 181 songs from Christopher Harte’s
Beatles dataset3, 100 songs from the RWC Pop dataset and
194 songs from the US Pop dataset4. Importantly, chord
classes exhibit a power-law distribution where a small num-
ber of classes —mostly major and minor chords— live in the
short head, while more obscure chords occur only a handful
of times. We split this data into 5 folds for cross validation,
using 4:1 as our train-to-test ratio. Additionally, some 200
disjoint tracks from McGill’s Billboard dataset [11] were
identified on YouTube and added to all training sets.

4.2. Model Parameters

For our constant-Q input, we use 24 bins per octave, over 8
octaves, and grouped into 4 second windows at a framerate of
20Hz, and thus the input to the network is a matrix with shape
(80,192). Again, motivated by previous work, the parameters
of the fretboard model are as follows: layer f0 uses K =
16,m0 = 15,m1 = 27, and p = (2, 2); layer f1 uses K =
20,m0 = 15,m1 = 13, and p = (2, 2); layer f2 uses N =
8140, and M = 512; layer f3 uses K = 6,M = 9, and
N = 512; and layer f4 uses C = 61,K = 6, and M = 9.

4.3. Experimental Design

In lieu of measuring subjective experience of using the sys-
tem, we evaluate the quality of this model in the context of
chord recognition. To also quantify the impact of the guitar-
specific constraints, we define a second model with the same
parameter complexity outlined in Subsection 4.2, but mod-
ify the transformation of f3 to be a fully-connected layer like
f2 and use a linear softmax classifier rather than the RBF-
templates, trained to minimize the negative log-likelihood.
This allows us to control for model complexity and determine
the influence of the design constraints on the learning prob-
lem. Both models are run for 30k iterations.

3http://isophonics.net/content/reference-annotations-beatles
4https://github.com/tmc323/Chord-Annotations

7026

The conventional evaluation metric in chord recognition
is known as frame-wise recognition rate (FWRR), defined
as the flat average of correct predictions over the entire set.
Though standard, this metric is sensitive to the distribution of
the data and will prefer models that do well on the predomi-
nant classes, i.e major chords. We then complement this pre-
cision measure with a conceptual parallel to recall, referred to
here as average chord quality accuracy (ACQA), defined as
the mean of the individual chord quality accuracies. Lastly,
ground-truth chord names that are not among the qualities
named in Subsection 3.1 are counted as classification errors,
comprising roughly 10% of the dataset.

5. DISCUSSION

5.1. Results

After training, we evaluate these two models with the ap-
propriate holdout data and average performance across folds.
The fretboard and unconstrained models attain FWRRs of
58.26% and 58.72%, and ACQAs of 61.36% and 62.02%, re-
spectively. For comparison, the best known system reaches
a FWRR of 63.72% and a ACQA of 65.59% [12]; two other
high-performing systems achieve FWRRs of 63% [13] and
64.46% [14] in a similar formulation, but the results are not
directly comparable. To understand why these two deep net-
work models have higher ACQAs than FWRRs, the accuracy
for each quality is given in Table 1. Here we see that the
models perform much worse on minor (≈ -10%) and 7 (≈ -
20%) chords than in [12], but particularly better on no-chord
(≈ +15%), helping to balance out the ACQA. This behavior
causes a subpar FWRR, as the models make more errors on
the more frequently occurring chords and the uneven distri-
bution of the data manifests in the metric. Therefore ACQA
better characterizes how a model will perform across a wide
vocabulary of chords.

To further explore the behavior of the fretboard model,
Figure 3 illustrates three instances of the model processing
previously unseen data. Figure 3-a confirms that the model
is indeed able to produce representations similar to ideal tab-
lature. Figure 3-b demonstrates a chord quality confusion,
a common source of error where the root is correct but the
specific shape is wrong. Here, the network confuses A:7 for
A:maj, as the probability of the flat-7 (0th fret on the G-string)
is slightly smaller than that of the octave (2nd fret on the
G-string). To quantify the frequency of these kinds of con-
fusions, we map this chord vocabulary to the classic Major-
Minor task. In this scenario, the fretboard model now out per-
forms the unconstrained variant, with FWRRs of 77.42% and
76.42%, respectively; as a point of reference, the previously
discussed models achieve 82.12% [12], 80% [13], 79.37%
[14]. This demonstrates that vast majority errors in the fret-
board model are only between sevenths. Lastly, we even ob-
serve some, albeit infrequent, instances where the fretboard

Table 1. Average accuracies by chord quality for the fret-
board (FB) and unconstrained (UC) models.

maj min maj7 min7 7 N

FB 69.52 55.79 63.18 55.52 46.29 77.85

UC 69.58 57.24 62.08 55.38 49.60 78.21

e
B
G
D
A
E

e
B
G
D
A
E

e
B
G
D
A
E

(c)

X 0 1 2 3 4 5 6 7

e
B
G
D
A
E

(b)

e
B
G
D
A
E

(a)

e
B
G
D
A
E

X 0 1 2 3 4 5 6 7

X 0 1 2 3 4 5 6 7 X 0 1 2 3 4 5 6 7

X 0 1 2 3 4 5 6 7

X 0 1 2 3 4 5 6 7

Fig. 3. Three instances of correct chord templates (left) and
fretboard outputs (right) for data in the test set; (a) a correct
A:maj, (b) a confusion between A:7 and A:maj, two chords
that differ in only a single note, and (c) a correct E[:hdim7, a
never-before seen chord.

model is able to correctly represent chords outside the known
vocabulary. Figure 3-c is one such example, where the net-
work correctly produce the fingering for E[:hdim7, a chord
never seen during training. Thus, the fretboard model is able
to learn useful representations that are open to interpretation,
and is not limited to a predetermined set of classes.

5.2. Conclusions and Future Work

Here we have demonstrated a novel method to produce gui-
tar tablature from music audio that performs competitively
as a chord recognition system, while offering several notable
advantages over previous work. Human-readable represen-
tations of music are directly usable by the large online gui-
tarist communities discussed previously. Additionally, this
graphical representation would enable users to easily correct
errors made by the system, facilitating large-scale data collec-
tion and reducing the skill necessary to provide annotations.
Lastly, and somewhat remarkably, this model is able to gen-
eralize to never-before seen chord shapes.

Looking to future work, it is noteworthy that these re-
sults are obtained without any post-filtering or the application
of a music language model. Empirical experimentation with
HMMs failed to improve performance, but perhaps an alterna-
tive algorithm could help stabilize spurious errors and prevent
unlikely transitions. That said, using this system as a means
of collecting more ground-truth annotations could allow for
expanded training and performance evaluation, and aid in the
curation of a dataset specific to this task.

7027

6. REFERENCES

[1] T. Fujishima, “Realtime chord recognition of musical
sound: a system using common lisp music,” in Proc.
Int. Computer Music Conf., 1999.

[2] J. P. Bello and J. Pickens, “A robust mid-level represen-
tation for harmonic content in music signals,” in Proc.
ISMIR, 2005.

[3] A. Sheh and D.P.W. Ellis, “Chord segmentation and
recognition using em-trained hidden markov models,”
in Proc. ISMIR, 2003.

[4] E. J. Humphrey and J. P. Bello, “Rethinking Auto-
matic Chord Recognition with Convolutional Neural
Networks,” in Proc. Int. Conf. on Machine Learning
and Applications, 2012.

[5] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent, “Audio chord recognition with recurrent neural
networks,” in Proc. ISMIR, 2013.

[6] A. Barbancho, A. Klapuri, L. J. Tardón, and I. Bar-
bancho, “Automatic transcription of guitar chords and
fingering from audio,” IEEE Transactions on Audio,
Speech & Language Processing, vol. 20, no. 3, pp. 915–
921, 2012.

[7] G. Hori, H. Kameoka, and S. Sagayama, “Input-output
hmm applied to automatic arrangement for guitars.,”
JIP, vol. 21, no. 2, pp. 264–271, 2013.

[8] C. Schoerkhuber and A. Klapuri, “Constant-q transform
tool-box for music processing,,” in Proc. Sound and
Music Computing Conference, 2010.

[9] Y. LeCun, K. Kavukvuoglu, and C. Farabet, “Convo-
lutional networks and applications in vision,” in Proc.
ISCAS, 2010.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[11] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An expert
ground truth set for audio chord recognition and music
analysis,” in Proc. ISMIR, 2011.

[12] T. Cho, Improved Techniques for Automatic Chord
Recognition from Music Audio Signals, Ph.D. thesis,
New York University, 2012.

[13] M. Mauch and S. Dixon, “Simultaneous estimation of
chords and musical context from audio,” IEEE Trans-
actions on Audio, Speech & Language Processing, vol.
18, no. 6, pp. 1280–1289, 2010.

[14] Y. Ni, M. McVicar, R. Santos-Rodriguez, and T. De Bie,
“An end-to-end machine learning system for harmonic
analysis of music,” IEEE Transactions on Audio, Speech
& Language Processing, vol. 20, no. 6, pp. 1771–1783,
2012.

7028

