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Montréal, QC, Canada

Gautham J. Mysore Matthew Hoffman

Adobe Research
San Francisco, CA, USA

ABSTRACT

This paper seeks to exploit high-level temporal information
during feature extraction from audio signals via non-negative
matrix factorization. Contrary to existing approaches that im-
pose local temporal constraints, we train powerful recurrent
neural network models to capture long-term temporal depen-
dencies and event co-occurrence in the data. This gives our
method the ability to “fill in the blanks” in a smart way dur-
ing feature extraction from complex audio mixtures, an abil-
ity very useful for a number of audio applications. We apply
these ideas to source separation problems.

Index Terms— Recurrent neural networks, long-term
temporal dependencies, non-negative matrix factorization,
audio source separation

1. INTRODUCTION

Non-negative matrix factorization (NMF) is an unsupervised
technique to discover parts-based representations underlying
non-negative data [1]. When applied to the magnitude spec-
trogram of an audio signal, NMF can discover a basis of in-
terpretable recurring events and their associated time-varying
encodings, or activities, that together optimally reconstruct
the original spectrogram. In addition to accurate reconstruc-
tion, it is often useful to enforce various constraints to in-
fluence the decomposition. Those constraints generally act
on each time frame independently to encourage sparsity [2],
harmonicity of the basis spectra [3] or relevance with respect
to a discriminative criterion [4], or include a temporal com-
ponent such as simple continuity [5, 6, 7, 8], Kalman fil-
tering like techniques [9, 10, 11] or Markov chain model-
ing [12, 13, 14, 15]. In this paper, we aim to improve the
temporal description in the latter category with an expressive
connectionist model that can describe long-term dependen-
cies and high-level structure in the data.

Recurrent neural networks (RNN) [16] are powerful dy-
namical systems that incorporate an internal memory, or hid-
den state, represented by a self-connected layer of neurons.
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This property makes them well suited to model temporal se-
quences, such as frames in a magnitude spectrogram or fea-
ture vectors in an activity matrix, by being trained to pre-
dict the output at the next time step given the previous ones.
RNNs are completely general in that in principle they can de-
scribe arbitrarily complex long-term temporal dependencies,
which has made them very successful in music, language and
speech applications [17, 18, 19, 20]. A recent extension of
the RNN, called the RNN-RBM, employs time-dependent re-
stricted Boltzmann machines (RBM) to describe the multi-
modal conditional densities typically present in audio signals,
resulting in significant improvements over N-gram and HMM
baselines [21, 17]. In this paper, we show how to integrate
RNNs into the NMF framework in order to model sound mix-
tures. We apply our approach to audio source separation prob-
lems, but the technique is general and can be used for various
audio applications.

The remainder of the paper is organized as follows. In
sections 2 and 3 we introduce the NMF and RNN models. In
section 4 we incorporate temporal constraints into the feature
extraction algorithm. Finally, we present our methodology
and results in sections 5 and 6.

2. NON-NEGATIVE MATRIX FACTORIZATION

The NMF method aims to discover an approximate factoriza-
tion of an input matrix X:

N×T
X '

N×T
Λ ≡

N×K
W ·

K×T
H , (1)

where X is the observed magnitude spectrogram with time
and frequency dimensions T and N respectively, Λ is the re-
constructed spectrogram, W is a dictionary matrix of K ba-
sis spectra and H is the activity matrix. Non-negativity con-
straints Wnk ≥ 0, Hkt ≥ 0 apply on both matrices. NMF
seeks to minimize the reconstruction error, a distortion mea-
sure between the observed spectrogramX and the reconstruc-
tion Λ. A popular choice is the generalized Kullback-Leibler
divergence:

CKL ≡
∑
nt

(
Xnt log

Xnt

Λnt
−Xnt + Λnt

)
, (2)
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with which we will demonstrate our method. Minimizing
CKL can be achieved by alternating multiplicative updates
to H and W [22]:

H ← H ◦ W
T (X/Λ)

WT 11T
(3)

W ←W ◦ (X/Λ)HT

11THT
, (4)

where 1 is a vector of ones, the ◦ operator denotes element-
wise multiplication, and division is also element-wise. These
updates are guaranteed to converge to a stationary point of the
reconstruction error.

It is often reasonable to assume that active elements Hkt

should be limited to a small subset of the available basis spec-
tra. To encourage this behavior, a sparsity penaltyCS ≡ λ|H|
can be added to the total NMF objective [23], where | · | de-
notes the L1 norm and λ specifies the relative importance of
sparsity. In that context, we impose the constraint that the
basis spectra have unit norm. Equation (3) becomes:

H ← H ◦ W
T (X/Λ)

1 + λ
, (5)

and the multiplicative update to W (eq. 4) is replaced by pro-
jected gradient descent [24]:

W ←W − µ(1−X/Λ)HT (6)

Wnk ← max(Wnk, 0),W:k ←
W:k

|W:k|
, (7)

where W:k is the k-th column of W and µ is the learning rate.

3. RECURRENT NEURAL NETWORKS

The RNN formally defines the distribution of the vector se-
quence v ≡ {v(t) ∈ R+K

0 , 1 ≤ t ≤ T} of length T :

P (v) =

T∏
t=1

P (v(t)|A(t)), (8)

where A(t) ≡ {v(τ)|τ < t} is the sequence history at time t,
and P (v(t)|A(t)) is the conditional probability of observing
v(t) according to the model, defined below.

A single-layer RNN with hidden units ĥ(t) is defined by
its recurrence relation:

ĥ(t) = σ(Wvĥv
(t) +Wĥĥĥ

(t−1) + bĥ), (9)

where σ(x) ≡ (1 + e−x)−1 is the element-wise logistic sig-
moid function, Wxy is the weight matrix tying vectors x, y
and bx is the bias vector associated with x.

The model is trained to predict the observation v(t) at time
step t given the previous onesA(t). The prediction y(t) is ob-
tained from the hidden units at the previous time step ĥ(t−1):

y(t) = o(Wĥvĥ
(t−1) + bv), (10)
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Fig. 1. Graphical structure of the RNN-RBM. Single arrows
represent a deterministic function, double arrows represent
the stochastic hidden-visible connections of an RBM.

where o(a) is the output non-linearity function of an activa-
tion vector a, and should be as close as possible to the target
vector v(t). When the target is a non-negative real-valued vec-
tor, the likelihood of an observation can be given by:

P (v(t)|A(t)) ∝ v(t) · y(t)

|v(t)| · |y(t)|
(11)

o(a)k = exp(ak). (12)

Other forms for P and o are possible; we have found that the
cosine distance combined with an exponential non-linearity
work well in practice, presumably because predicting the ori-
entation of a vector is much easier for an RNN than predicting
its magnitude.

When the output observations are multivariate, another
approach is to capture the higher-order dependencies be-
tween the output variables using a powerful output probability
model such as an RBM, resulting in the so-called RNN-RBM
(Figure 1) [21, 17]. The Gaussian RBM variant is typically
used to estimate the density of real-valued variables v(t) [25].
In this case, the RNN’s task is to predict the parameters of the
conditional distribution, i.e. the RBM biases at time step t:

b(t)v = bv +Wĥvĥ
(t−1) (13)

b
(t)
h = bh +Wĥhĥ

(t−1). (14)

In an RBM, the likelihood of an observation is related to the
free energy F (v(t)) by P (v(t)|A(t)) ∝ e−F (v(t)):

F (v(t)) ≡ 1

2
||v(t)||2 − b(t)v · v(t) − |s(b

(t)
h +Wvhv

(t))|, (15)

where s(x) ≡ log(1 + ex) is the element-wise softplus func-
tion and Wvh is the weight matrix of the RBM. The log-
likelihood gradient with respect to the RBM parameters is
generally intractable due to the normalization constant but can
be estimated by contrastive divergence [26, 17].

The RNN model can be trained by minimizing the nega-
tive log-likelihood of the data:

CRNN (v) = −
T∑
t=1

logP (v(t)|A(t)), (16)
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whose gradient with respect to the RNN parameters is ob-
tained by backpropagation through time (BPTT) [16]. Several
strategies can be used to reduce the difficulties associated with
gradient-based learning in RNNs including gradient clipping,
sparsity and momentum techniques [27, 20].

4. TEMPORALLY CONSTRAINED NMF

In this section, we incorporate RNN regularization into the
NMF framework to temporally constrain the activity ma-
trix H during the decomposition. A simple form of regular-
ization that encourages neighboring activity coefficients to be
close to each other is temporal smoothing:

CTS =
1

2
β

T−1∑
t=1

||H:t −H:t+1||2, (17)

where the hyperparameter β is a weighting coefficient.
In the proposed model, we add the RNN negative log-

likelihood term (eq. 16) with v := {H:t, 1 ≤ t ≤ T} to the
total NMF cost:

C = CKL + CS + CTS + CL2 + αCRNN (H), (18)

where CL2 ≡ 1
2η||H||

2 provides L2 regularization, and the
hyperparameters η, α specify the relative importance of each
prior. This framework corresponds to an RNN generative
model at temperature α−1 describing the evolution of the la-
tent variable H:t, the observation X:t at time t being condi-
tioned on H:t via the reconstruction error CKL. The overall
graphical model can be seen as a generalization of the non-
negative hidden Markov model (N-HMM) [15].

The NMF model is first trained in the usual way by al-
ternating the updates (5)–(7) and extracting the activity fea-
tures H; the RNN is then trained to minimize CRNN (H) by
stochastic gradient descent. During supervised NMF [28], it
is necessary to infer the activity matrix H that minimizes the
total cost (eq. 18) given a pre-trained dictionary W and a test
observation X . Our approach is to replace the multiplicative
udpate (5) with a gradient descent update:

H ← H−µ
[
WT (1−X/Λ) + λ+ ηH + ∂CTS

∂H + α∂CRNN

∂H

]
(19)

where the gradient of CTS is given by:

∂CTS
∂Hkt

= β


Hkt −Hk(t+1) if t = 1

2Hkt −Hk(t−1) −Hk(t+1) if 1 < t < T

Hkt −Hk(t−1) if t = T.
(20)

When deriving ∂CRNN/∂H , it is important to note that
H:t affects the cost directly by matching the prediction y(t)

in equation (11), and also indirectly by influencing the fu-
ture predictions of the RNN viaA(t+δt). By fully backpropa-
gating the gradient through time, we effectively take into ac-
count future observations X:(t+δt) when updating H:t. While

other existing approaches require sophisticated inference pro-
cedures [29, 30], the search for a globally optimal H can be
facilitated by using gradient descent when the inferred vari-
ables are real-valued.

The RNN-RBM requires a different approach due to the
intractable partition function of the tth RBM that varies with
A(t). The retained strategy is to consider A(t) fixed during
inference and to approximate the gradient of the cost by:

CRNN
∂v(t)

' ∂F (v(t))

∂v(t)
= v(t) − b(t)v − σ(b

(t)
h +Wvhv

(t))WT
vh.

(21)
Since this approach can be unstable, we only update the value
of A(t) every m iterations of gradient descent (m = 10) and
we use an RNN in conjunction with the RNN-RBM to exploit
its tractability and norm independence properties.

5. EVALUATION

In the next section, we evaluate the performance of our RNN
model on a source separation task in comparison with a tra-
ditional NMF baseline and NMF with temporal smoothing.
Source separation is interesting for our architecture because,
contrary to purely discriminative tasks such as multiple pitch
estimation or chord estimation where RNNs are known to out-
perform other models [29, 30], source separation requires ac-
curate signal reconstruction.

We consider the supervised and semi-supervised NMF al-
gorithms [28] that consist in training submodels on isolated
sources before concatenating the pre-trained dictionaries and
feeding the relevant activity coefficients into the associated
temporal model; final source estimates are obtained by sepa-
rately reconstructing the part of the observation explained by
each submodel. In the semi-supervised setting, an additional
dictionary is trained from scratch for each new examined se-
quence and no temporal model is used for the unsupervised
channel. Wiener filtering is used as a final step to ensure that
the estimated source spectrograms X(i) add up to the original
mixture X:

X̂(i) =
X(i)∑
j X

(j)
◦X, (22)

before transforming each source in the time domain via the
inverse short-term Fourier transform (STFT).

Our main experiments are carried out on the MIR-1K
dataset1 featuring 19 singers performing a total of 1,000
Chinese pop karaoke song excerpts, ranging from 4 to 13 sec-
onds and recorded at 16 kHz. For each singer, the available
tracks are randomly split into training, validation and test
sets in a 8:1:1 ratio. The accompaniment music and singing
voice channels are summed directly at their original loudness
(∼ 0 dB). The magnitude spectrogram X is computed by
the STFT using a 64 ms sliding Blackman window with hop

1https://sites.google.com/site/
unvoicedsoundseparation/mir-1k
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size 30 ms and zero-padded to produce a feature vector of
length 900 at each time step. The source separation quality
is evaluated with the BSS Eval toolbox2 using the standard
metrics SDR, SIR and SAR that measure for each channel
the ratios of source to distortion, interference and artifacts re-
spectively [31]. For each model and singer combination, we
use a random search on predefined intervals to select the hy-
perparameters that maximize the mean SDR on the validation
set; final performance is reported on the test set.

6. RESULTS

To illustrate the effectiveness of our temporally constrained
model, we first perform source separation experiments on a
synthetic dataset of two sawtooth wave sources of different
amplitudes and randomly shifted along both dimensions. Fig-
ure 2 shows an example of such sources (Fig. 2(a–b)), along
with the sources estimated by supervised NMF with either
no temporal constraint (Fig. 2(c–d)) or with an RNN with
the cosine distance cost (Fig. 2(e–f)). While this problem is
provably unsolvable for NMF alone or with simple tempo-
ral smoothing (eq. 17), the RNN-constrained model success-
fully separates the two mixed sources. This extreme example
demonstrates that temporal constraints become crucial when
the content of each time frame is not sufficient to distinguish
each source.

(a) Source 1 (b) Source 2

(c) Estimated 1, NMF (d) Estimated 2, NMF

(e) Estimated 1, RNN (f) Estimated 2, RNN

Fig. 2. Toy example: separation of sawtooth wave sources of
different amplitudes (a–b) using supervised NMF with either
no prior (c–d) or an RNN with the cosine distance cost (e–f).

Source separation results on the MIR-1K dataset are pre-
sented in Table 1 for supervised (top) and semi-supervised3

(bottom) NMF (K = 15). The RNN-based models clearly
outperform the baselines in SDR and SIR for both sources
with a moderate degradation in SAR. To illustrate the trade-
off between the suppression of the unwanted source and the

2http://bass-db.gforge.inria.fr/bss_eval/
3Only the singing voice channel is supervised in this case.

Model SDR SIR SAR
acc. sing. acc. sing. acc. sing.

NMF 5.04 5.05 7.75 7.59 10.00 10.25
NMF-sm 6.08 5.59 8.77 7.42 10.96 11.93
RNN 6.13 5.80 9.46 7.79 10.34 11.52
RNN-RBM 6.83 7.12 11.25 9.75 9.86 11.52
NMF 5.20 3.58 9.54 4.95 8.80 11.43
NMF-sm 5.57 3.71 9.48 4.94 9.57 11.84
RNN 5.94 3.70 10.49 4.86 9.36 12.07
RNN-RBM 6.16 5.05 11.81 7.12 9.04 10.59

Table 1. Audio source separation performance on the MIR-
1K test set obtained via singer-dependent supervised (top) and
semi-supervised (bottom) NMF with either no prior, simple
temporal smoothing, an RNN (eq. 11) or the RNN-RBM.

reduction of artifacts, we plot in Figure 3 the performance
metrics as a function of the weight α/α0 of the RNN-RBM
model, where α0 ∈ [10, 20] is the hyperparameter value se-
lected on the validation set. This inherent trade-off was also
observed elsewhere [15]. Overall, the observed improvement
in SDR is indicative of a better separation quality.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
weight α/ α 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
weight α/ α 0

6

8

10

12

14

ra
ti
o
(d
B
)

SDR SIR SAR

(a) Accompaniment (b) Singing voice

Fig. 3. Source separation performance trade-off on the MIR-
1K test set by supervised NMF with an RNN-RBM model
weighted by α, where α0 maximizes the validation SDR.

7. CONCLUSION

We have presented a framework to leverage high-level in-
formation during feature extraction by incorporating an
RNN-based prior inside the NMF decomposition. While
the combined approach surpasses the baselines in realistic
audio source separation settings, it could be further improved
by employing a deep bidirectional RNN with multiplicative
gates [19], replacing the Gaussian RBMs with the recently
developed tractable distribution estimator for real-valued vec-
tors RNADE [32, 17], implementing an EM-like algorithm
to jointly train the NMF and RNN models, and transitioning
to a universal speech model for singer-independent source
separation [33].
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