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ABSTRACT

Content-based music information retrieval tasks have tradi-
tionally been solved using engineered features and shallow
processing architectures. In recent years, there has been
increasing interest in using feature learning and deep ar-
chitectures instead, thus reducing the required engineering
effort and the need for prior knowledge. However, this new
approach typically still relies on mid-level representations
of music audio, e.g. spectrograms, instead of raw audio
signals. In this paper, we investigate whether it is possible
to apply feature learning directly to raw audio signals. We
train convolutional neural networks using both approaches
and compare their performance on an automatic tagging
task. Although they do not outperform a spectrogram-based
approach, the networks are able to autonomously discover
frequency decompositions from raw audio, as well as phase-
and translation-invariant feature representations.

Index Terms— feature learning, end-to-end learning,
convolutional neural networks, music information retrieval,
automatic tagging

1. INTRODUCTION

In music information retrieval (MIR), researchers have tradi-
tionally relied on a two-stage approach to solve content-based
MIR tasks: features are extracted from music audio signals,
and are then used as input to a regressor or classifier, such
as support vector machines or logistic regression. The fea-
tures are designed to uncover information in the input that is
salient for the task at hand. This requires considerable exper-
tise about the problem and constitutes a significant engineer-
ing effort.

In recent years, feature learning has become increasingly
popular. In many domains, it has allowed researchers to build
models of data requiring only a minimum of prior knowledge.
In computer vision and speech recognition, modern feature
learning techniques have become the state of the art [1, 2].
Lately, feature learning has also been receiving more atten-
tion from the MIR community [3]. Most research on the ap-
plication of feature learning to MIR problems relies on us-
ing mid-level representations of audio, such as spectrograms.

This is also a form of prior knowledge. In computer vision, on
the other hand, modern feature learning techniques are able to
operate directly on raw pixel representations of images, with-
out requiring any form of preprocessing [4].

In this paper, we investigate whether it is possible to ap-
ply feature learning directly to raw audio signals, thus further
reducing the amount of prior knowledge required. We use
convolutional neural networks to solve an automatic tagging
task and compare different input representations and network
architectures. In Section 2, we describe the mid-level repre-
sentations of audio that are frequently used in MIR. In Section
3, we discuss the end-to-end learning paradigm. Our experi-
ments and results are described in Section 4, and we conclude
in Section 5.

2. MID-LEVEL REPRESENTATIONS

Many higher-level characteristics of sound relate to the en-
ergies in different frequency bands. This explains the utility
of time-frequency representations of audio such as spectro-
grams, which are frequently used in literature [5, 6, 7, 8]. An-
other advantage in the context of feature learning is that they
convert the audio data into a representation that is very simi-
lar to an image. This makes it easier to translate feature learn-
ing approaches, which are often designed with image data in
mind, to an audio context.

Most researchers do not use raw spectrograms, which
have a linear frequency scale. The mel scale or a logarith-
mic frequency scale are preferred instead: they reduce the
resolution for higher frequencies, which matches the human
perception of frequency, and reduce the size of the represen-
tation. Another common preprocessing step is to apply some
form of dynamic range compression, for example by taking
the logarithm of the spectrograms.

Although there has been some work about learning fea-
tures directly from speech signal fragments [9, 10, 11], to our
knowledge feature learning has not been applied directly to
raw music audio signals in literature.
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3. END-TO-END LEARNING

The term end-to-end learning is used to refer to processing
architectures where the entire stack, connecting the input to
the desired output, is learned from data [12]. An end-to-end
learning approach greatly reduces the need for prior know-
ledge about the problem, and minimises the required engi-
neering effort; only the tuning of the model hyperparame-
ters requires some expertise, but even that process can be au-
tomated [13]. Learning features can result in better perfor-
mance than engineering them, because they are automatically
tailored to the task at hand. Furthermore, training the entire
processing architecture can lead to new insights about what
kind of information is salient for a given task [3, 6].

Convolutional neural networks (CNNs) [14] in particu-
lar lend themselves well to this setting, because they consist
of many layers of processing that are all learned using the
same objective function, which is propagated through the net-
work. CNNs have been used for image classification [2, 15],
speech recognition [5], epileptic seizure detection [16], and
many other applications. In music information retrieval, they
have been used for onset detection [17], genre classification
[5, 18, 19], artist recognition [5, 19], instrument classification
[20] and content-based recommendation [21].

4. EXPERIMENTS AND RESULTS

To compare end-to-end learning with the traditional MIR ap-
proach of using a mid-level representation of the audio sig-
nals, we trained deep CNNs to perform automatic tagging on
the Magnatagatune dataset [22]. The dataset contains 25863
29-second audio clips with a sample rate of 16 kHz, taken
from songs by 230 artists, annotated with 188 tags. It comes
in 16 parts, of which we used the first 12 for training, the 13th
for validation and the remaining 3 for testing. We only used
the 50 most frequent tags.

4.1. Experimental setup

The CNN architecture that we used as a basis for all our ex-
periments is visualised in Figure 1. It consists of 6 layers in
total: two convolutional layers with 32 filters of length 8, al-
ternating with max-pooling layers with pooling size 4, and
two dense layers with 100 and 50 units respectively. We used
rectified linear units [23] in all layers except for the top layer,
where we used sigmoidal units. We extended this architecture
for each the experiments described in the following subsec-
tions. Note that all convolutions and pooling operations are
one-dimensional, i.e. only along the axis representing time.
Although we could convolve and pool in the frequency direc-
tion in the case of spectrogram input [24], we did not inves-
tigate this approach here to ensure a fair comparison, as it is
not possible with raw audio input.

(a)

(b)

(c)

tag predictions

6: fully connected #50

5: fully connected #100

4: max-pooling ↔ 4

3: convolution #32 ↔ 8

2: max-pooling ↔ 4

1: convolution #32 ↔ 8

spectrograms

strided conv.

raw audio

feature pooling

strided conv.

raw audio

Fig. 1. The convolutional neural network architecture we
used for our experiments. The filter sizes and pooling sizes
(↔) and numbers of units (#) are indicated. We consider
three possible approaches: (a) spectrograms as input, (b) raw
audio as input by adding an additional strided convolutional
layer, and (c) raw audio with feature pooling.

We trained the network using minibatch gradient descent,
with minibatches of 10 examples. We used windows of about
3 seconds of audio as input. To compute tag predictions for a
clip, we averaged the predictions over consecutive windows.
We evaluated the use of dropout regularization [25] in the
fully connected layers, but this did not affect performance
significantly. To evaluate the predictions, we computed the
area under the ROC curve (AUC) for each tag and computed
the average across all 50 tags. For each experiment, we per-
formed roughly 5 million parameter updates and validated the
model at regular intervals. We report results on the test set for
the parameters that achieved the best validation score. We
used the Theano library to enable GPU acceleration [26].

4.2. Spectrograms versus raw audio

To assess whether the task of tag prediction can be solved with
a CNN using only raw audio, we compared two approaches:
• spectrograms: we extracted mel-spectrograms with 128

components, and performed dynamic range compression
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length stride AUC (spectrograms) AUC (raw audio)
1024 1024 0.8690 0.8366
1024 512 0.8726 0.8365
512 512 0.8793 0.8386
512 256 0.8793 0.8408
256 256 0.8815 0.8487

Table 1. Results for the tag prediction task on Magnata-
gatune, with convolutional neural networks using spectro-
grams and raw audio, for different combinations of filter
lengths and strides. We report AUCs on the test set. 1024
samples correspond to 64 ms at a sample rate of 16 kHz.

by applying the elementwise function f(x) = log(1 +
C · x), where C is a constant controlling the amount of
compression [27], which we set to 10, 000. This repre-
sentation was used as input to the network, as shown in
Figure 1a. We tried a number of different window lengths
and strides (hop sizes), which are listed in Table 1.

• raw audio: we extended the basic architecture described
in the previous subsection by adding an additional convo-
lutional layer at the input side, and used raw audio as in-
put, as shown in Figure 1b. The additional layer performs
a strided convolution, i.e. a convolution with a stride
larger than one, because it would be computationally in-
feasible to compute full convolutions on raw audio sig-
nals. For this layer, we tried the same lengths and strides
as for the spectrogram extraction. The raw audio signals
were not preprocessed in any way.
The results for these experiments are listed in Table 1.

The spectrogram approach consistently outperforms using
raw audio, and a smaller window length consistently im-
proves results. Presumably the increased time granularity is
useful for this task. Reducing the stride to half the window
length does not result in any significant improvement.

To see whether the network using raw audio as input is
able to learn frequency-selective filters in the lowest layer, we
computed their squared magnitude spectra. We have visu-
alised the spectra of the filters ordered according to the dom-
inant frequency (low to high) in Figure 2. From this visu-
alisation, it is clear that most features are indeed frequency-
selective, and they cover the lower half of the spectrum. This
is to be expected, as the harmonic content of music tends to
be mostly in the lower end of the spectrum. It is especially
worth noting that the filters seem to linearly span the fre-
quency range up to about 1000 Hz, whereas filters that are
selective for higher frequencies are more spread out. This is
reminiscent of the mel scale. Some of the learned filters are
shown in Figure 3, ordered by dominant frequency. They are
quite noisy, but the dominant frequency is visible for most.

Despite the fact that the training procedure is able to
discover a frequency decomposition from raw audio exam-
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Fig. 2. Normalised magnitude spectra of the filters learned in
the lowest layer of a convolutional neural network that pro-
cesses raw audio signals, ordered according to the dominant
frequency (from low to high). Each vertical line in the graph
represents the frequency spectrum of a different filter. The
filters have a length and stride of 512 samples.

Fig. 3. A subset of filters learned in the lowest layer of a con-
volutional neural network that processes raw audio signals,
ordered by dominant frequency. The filters have a length and
stride of 512 samples.

ples, there is a significant performance gap between both
approaches. This may be because the network architecture
for raw audio input is not sufficiently expressive to perform
an operation similar to spectrogram extraction. In the fol-
lowing experiments, we have attempted to incorporate some
aspects of spectrograms into the network architecture, to as-
sess whether they are important to achieve good performance.

4.3. Dynamic range compression

The mel-spectrograms were compressed using the nonlinear
function described in Section 4.2. This type of nonlinearity is
probably difficult to learn using a network consisting of recti-
fied linear units. We replaced the rectification nonlinearity in
the strided convolutional layer with a compression function.
The results are shown in Table 2. Unfortunately, this does not
have the desired effect, and in fact it severely degrades per-
formance. The logarithmic nonlinearity seems to impede the
optimization process.
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nonlinearity f(x) AUC
rectified linear max(0, x) 0.8366

logarithmic log(1 + C · x2) 0.7508
logarithmic log(1 + C · |x|) 0.7487

Table 2. Results for the tag prediction task on Magnata-
gatune, with convolutional neural networks using raw audio
as input, for different types of nonlinearities used in the
strided convolutional layer. We report AUCs on the test set. A
filter length and stride of 1024 were used for all experiments.

pooling pool size AUC
no pooling 1 0.8366
L2 pooling 2 0.8387
L2 pooling 4 0.8387

max-pooling 2 0.8183
max-pooling 4 0.8280

Table 3. Results for the tag prediction task on Magnata-
gatune, with convolutional neural networks using raw audio
as input, for different types of feature pooling after the strided
convolutional layer. We report AUCs on the test set. A filter
length and stride of 1024 were used for all experiments.

4.4. Invariance

Spectrograms exhibit various types of invariance, which are
likely to be useful for the task of tag prediction: they are
phase-invariant, and translation-invariant to a limited extent
as well. Automatically discovering these invariances from
data may be quite challenging. To facilitate this process, we
can further modify the network architecture to pool across
groups of filters, as shown in Figure 1c. Hyvärinen and Hoyer
[28] showed that summing the squares of the activations of a
set of linear filters (L2 pooling) allows for learning phase- and
translation-invariant features. More recently, units computing
the maximal activation across a set of linear filters (maxout
units) have been used to achieve state of the art image classi-
fication performance on several benchmark datasets [29]. We
have evaluated both approaches.

The results are shown in Table 3. Although L2 pooling
does not seem to perform significantly better than no pooling,
and max-pooling performs worse, it should be noted that com-
bining linear filters by pooling reduces the effective number
of features computed in the strided convolutional layer. This
in turn reduces the number of parameters in the next convolu-
tional layer, leading to a network with fewer trainable parame-
ters. Some filters learned by the network with L2 pooling and
a pool size of 4 are shown in Figure 4. As expected, most of
the pools consist of filters that are translated or phase-shifted
versions of each other.

Fig. 4. A subset of filters learned in a convolutional neural
network with a feature pooling layer (L2 pooling with pools
of 4 filters). The filters have a length and stride of 1024 sam-
ples. Each row represents a filter group. The filters were low-
pass filtered to remove noise and make the dominant frequen-
cies stand out.

5. CONCLUSION AND FUTURE WORK

In this paper, we have investigated whether end-to-end learn-
ing for music audio is feasible using convolutional neural
networks to solve an automatic tagging task. Although the
performance level of a spectrogram-based approach was
not reached, we have shown that the networks are able to
learn useful features from raw audio: they are able to au-
tonomously discover frequency decompositions, and when
a feature pooling layer is incorporated, they discover phase-
and translation-invariant features as well.

In future work, we will investigate the use of larger net-
works, in an effort to attain the performance of the spec-
trogram approach using only raw audio signals. We will
also investigate the effect of different initializations of the
strided convolutional layer. For example, we can initialize
the weights such that it performs an operation that mim-
ics spectrogram extraction, and then finetune these weights
with gradient descent. Finally, we would like to investigate
the feasibility of end-to-end learning for music audio using
unsupervised feature learning techniques, instead of purely
supervised learning.
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